Anhydrobiotic Abilities of Tardigrades

Chapter
Part of the Topics in Current Genetics book series (TCG, volume 21)

Abstract

Tardigrades have been discovered in 1773 and are found in a variety of habitats within marine, freshwater, and terrestrial ecosystems. To survive in habitats that are prone to occasional drought, they possess the ability to enter a reversible state known as anhydrobiosis. The desiccation tolerance allows them to cope with temporal variation of available water and extended lifespan in an anhydrobiotic state with up to 20 years by producing a time shift in the age of tardigrades. The period of anhydrobiosis is limited by cumulative DNA damage and the function of repair pathways during and after rehydration. The same pathways are probably responsible for the tolerance of high doses of radiation. Heat shock proteins serve as molecular chaperones to preserve or restore the protein integrity and late embryogenesis abundant (LEA) proteins LEA proteins play an important role as well. In several desiccated species glass transition has been detected, which support the vitrification hypothesis.

Keywords

Late Embryogenesis Abundant Desiccation Tolerance Late Embryogenesis Abundant Protein Bdelloid Rotifer Tardigrade Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alpert P (2000) The discovery, scope, and puzzle of desiccation tolerance in plants. Plant Ecol 151:5–17CrossRefGoogle Scholar
  2. Bahrndorff S, Tunnacliffe A, Wise MJ, McGee B, Holmstrup M, Loeschcke V (2009) Bioinformatics and protein expression analyses implicate LEA proteins in the drought response of Collembola. J Insect Physiol 55:210–217PubMedCrossRefGoogle Scholar
  3. Battista JR, Park MJ, McLemore AE (2001) Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43:133–139PubMedCrossRefGoogle Scholar
  4. Baumann H (1922) Die Anabiose der Tardigraden. Zool Jahrb 45:501–556Google Scholar
  5. Baumann H (1927) Anabiosis of tardigrades. Zool Anz 72:175–179Google Scholar
  6. Browne J, Tunnacliffe A, Burnell A (2002) Anhydrobiosis – plant desiccation gene found in a nematode. Nature 416:38PubMedCrossRefGoogle Scholar
  7. Carpenter JF, Crowe LM, Crowe JH (1987) Stabilization of phosphofructokinase with sugars during freeze-drying characterization of enhanced protection in the presence of divalent cations. Biochim Biophys Acta 923:109–115PubMedCrossRefGoogle Scholar
  8. Chandler J, Bartels D (1999) Plant desiccation. In: Lerner HR (ed) Plant Responses to Environmental Stresses: From Phytohormones to Genome Reorganization. Marcel Dekker, New York, pp 575–590Google Scholar
  9. Clegg JS (1965) Origin of trehalose and its significance during formation of encysted dormant embryos of Artemia salina. Comp Biochem Physiol 14:135–143PubMedCrossRefGoogle Scholar
  10. Clegg JS (1967) Metabolic studies of crytobiosis in encysted embryos of Artemia salina. Comp Biochem Physiol 20:801–809CrossRefGoogle Scholar
  11. Clegg JS (1974) Biochemical adaptations associated with the embryonic dormancy of Artemia salina. Trans Am Microsc Soc 93:481–490CrossRefGoogle Scholar
  12. Clegg JS (1986) The physical properties and metabolic status of Artemia cysts at low water contents: the water replacement hypothesis. In: Leopold AC (ed) Membranes, Metabolism and Dry Organisms Cornell University Press, New York, pp 169–187Google Scholar
  13. Clegg JS, Jackson SA, Warner AH (1994) Extensive intracellular translocations of a major protein accompany anoxia in embryos of Artemia franciscana. Exp Cell Res 212:77–83PubMedCrossRefGoogle Scholar
  14. Clegg JS, Jackson SA, Liang P, Macrae TH (1995) Nuclear–cytoplasmic translocations of protein p26 during aerobic–anoxic transitions in embryos of Artemia franciscana. Exp Cell Res 219:1–7PubMedCrossRefGoogle Scholar
  15. Crowe JH (1975) The physiology of cryptobiosis in tardigrades. Memorie dell'Istituto Italiano di Idrobiologia Dott Marco de Marchi 32:37–59Google Scholar
  16. Crowe LM (2002) Lessons from nature: The role of sugars in anhydrobiosis. Comp Biochem Physiol A Mol Integr Physiol 131:505–513PubMedCrossRefGoogle Scholar
  17. Crowe JH, Clegg JS (1973) Anhydrobiosis dowden. Hutchinson and Ross, Stroudsburg, PA, p 477Google Scholar
  18. Crowe JH, Clegg JS (eds) (1978) Dry biological systems. Academic, New YorkGoogle Scholar
  19. Crowe JH, Madin KAC (1975) Anhydrobiosis in nematodes evaporative water loss and survival. J Exp Zool 193:323–334CrossRefGoogle Scholar
  20. Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid-bilayers and proteins by sugars. Biochem J 242:1–10PubMedGoogle Scholar
  21. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103PubMedCrossRefGoogle Scholar
  22. Crowe JH, Crowe LM, Petrelski S, Hoekstra FA, Araujo PD, Panek AD (1997) Anhydrobiosis: cellular adaptation to extreme dehydration. In: Dantzler WH (ed) Handbook of Physiology. Oxford University Press, New YorkGoogle Scholar
  23. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599PubMedCrossRefGoogle Scholar
  24. de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the alpha-crystallin–small heat-shock protein superfamily. Int J Biol Macromol 22:151–162PubMedCrossRefGoogle Scholar
  25. Doyère PLN (1842) Memoires sur les Tardigrades. Sur le facilité que possedent les Tardigrades, les rotiferes, les anguillules des toits et quelques autres animalcules, de revenir à la vie après été completement desséchées. Ann Sci Nat Zool Biol Anim 2e:5–35Google Scholar
  26. Ehrenberg CG (1834) Über das Wiederaufleben der Moosfauna. Okens Isis 6(7):710–713Google Scholar
  27. Eichhorn JC (1781) Beyträge zur Naturgeschichte der kleinsten Wasserthiere, die mit blossem Auge nicht können gesehen werden und die sich in den Gewässern in und um Danzig befinden. F. Nicolai, Berlin and StettinGoogle Scholar
  28. Ellis JR (2004) From chloroplasts to chaperones: How one thing led to another. Photosynth Res 80:333–343CrossRefGoogle Scholar
  29. Franceschi T (1948) Anabiosi nei tardigradi. Boll Mus Ist Biol Univ Genova 22:47–49Google Scholar
  30. Galau GA, Hughes DW, Dure L III (1986) Abscisic-acid induction of cloned cotton gossypium–hirsutum late embryogenesis-abundant lea messenger rna species. Plant Mol Biol 7:155–170CrossRefGoogle Scholar
  31. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45PubMedCrossRefGoogle Scholar
  32. Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci USA 105:5139–5144PubMedCrossRefGoogle Scholar
  33. Gnaiger E, Méndez G, Hand SC (2000) High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci USA 97:11080–11085PubMedCrossRefGoogle Scholar
  34. Goeze JAE (1773) Herrn Karl Bonnets Abhandlungen aus der Insektologie aus d. Franz. übers. u. mit einigen Zusätzen hrsg. v. Joh. August Ephraim Goeze Gebauer, Halle. p 414Google Scholar
  35. Goyal K, Tisi L, Basran A, Browne J, Burnell A, Zurdo J, Tunnacliffe A (2003) Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278:12977–12984PubMedCrossRefGoogle Scholar
  36. Goyal K, Pinelli C, Maslen SL, Rastogi RK, Stephens E, Tunnacliffe A (2005) Dehydration-regulated processing of late embryogenesis abundant protein in a desiccation-tolerant nematode. FEBS Lett 579:4093–4098PubMedCrossRefGoogle Scholar
  37. Grzelezak ZF, Sattalo MH, Hanley-Bowdoin LK, Kennedy TD, Lane BG (1982) Synthesis and turnover of proteins and mRNA in germinating wheat embryos. Can J Biochem Physiol 60(3):389–397CrossRefGoogle Scholar
  38. Guidetti R, Jönsson KI (2002) Long-term anhydrobiotic survival in semi-terrestrial micrometazonas. J Zool (1987) 257:181–187CrossRefGoogle Scholar
  39. Hand SC (1998) Quiescence in Artemia franciscana embryos: reversible arrest of metabolism and gene expression at low oxygen levels. J Exp Biol 201:1233–1242PubMedGoogle Scholar
  40. Hand SC, Hardewig I (1996) Downregulation of cellular metabolism during environmental stress: Mechanisms and implications. Annu Rev Physiol 58:539–563PubMedCrossRefGoogle Scholar
  41. Hengherr S, Brümmer F, Schill RO (2008a) Anhydrobiosis in tardigrades and its effects on longevity traits. J Zool (1987) 275:216–220CrossRefGoogle Scholar
  42. Hengherr S, Heyer AG, Brümmer F, Schill RO (2008b) Trehalose as protecting agent in aquatic invertebrates during dormancy induced by desiccation. Comp Biochem Physiol A Comp Physiol 151:S34Google Scholar
  43. Hengherr S, Heyer AG, Köhler HR, Schill RO (2008c) Trehalose and anhydrobiosis in tardigrades – evidence for divergence in responses to dehydration. FEBS J 275:281–288PubMedCrossRefGoogle Scholar
  44. Hengherr S, Worland MR, Reuner A, Brümmer F, Schill RO (2009) High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiol Biochem Zool 82:749–755PubMedCrossRefGoogle Scholar
  45. Hightower LEH (1993) A brief perspective on the heat-shock response and stress proteins. Mar Environ Res 35:79–83CrossRefGoogle Scholar
  46. Hoekstra FA, Crowe JH, Crowe LM (1992a) Germination and ion leakage are linked with phase transitions of membrane lipids during imbibition of Typha latifolia pollen. Physiol Plant 84:29–34CrossRefGoogle Scholar
  47. Hoekstra FA, Crowe JH, Crowe LM, van Roekel T, Vermeer E (1992b) Do phospholipids and sucrose determine membrane phase transitions in dehydrating pollen species? Plant Cell Environ 15(5):601–606CrossRefGoogle Scholar
  48. Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade Milnesium tardigradum. Int J Radiat Biol 82:843–848PubMedCrossRefGoogle Scholar
  49. Hufeland CW (1817) Makrobiotik – Die Kunst das menschliche Leben zu verlängern. Fleischhauer, ReutlingenGoogle Scholar
  50. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403PubMedCrossRefGoogle Scholar
  51. Jönsson KI, Bertolani R (2001) Facts and fiction about long-term survival in tardigrades. J Zool (Lond) 255:121–123CrossRefGoogle Scholar
  52. Jönsson KI, Schill RO (2007) Induction of Hsp70 by desiccation, ionising radiation and heat-shock in the eutardigrade Richtersius coronifer. J Comp Physiol B 146:456–460Google Scholar
  53. Jönsson KI, Harms-Ringdahl M, Torudd J (2005) Radiation tolerance in the eutardigrade Richtersius coronifer. Int J Radiat Biol 81:649–656PubMedCrossRefGoogle Scholar
  54. Jørgensen A, Møbjerg N, Kristensen RM (2007) A molecular study of the tardigrade Echiniscus testudo (Echiniscidae) reveals low DNA sequence diversity over a large geographical area. J Limnol 66:77–83CrossRefGoogle Scholar
  55. Keilin D (1959) The Leeuwenhoek Lecture. The problem of anabiosis or latent life: History and current concept. Proc R Soc Lond B Biol Sci 150:149–191PubMedCrossRefGoogle Scholar
  56. Kikawada T, Nakahara Y, Kanamori Y, Iwata K, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348:56–61PubMedCrossRefGoogle Scholar
  57. Lapinski J, Tunnacliffe A (2003) Anhydrobiosis without trehalose in bdelloid rotifers. FEBS Lett 553:387–390PubMedCrossRefGoogle Scholar
  58. Liang P, MacRae TH (1999) The synthesis of a small heat shock/alpha-crystallin protein in Artemia and its relationship to stress tolerance during development. Dev Biol 207:445–456PubMedCrossRefGoogle Scholar
  59. Liang P, Amons R, Clegg JS, MacRae TH (1997a) Molecular characterization of a small heat shock alpha-crystallin protein in encysted Artemia embryos. J Biol Chem 272:19051–19058PubMedCrossRefGoogle Scholar
  60. Liang P, Amons R, Macrae TH, Clegg JS (1997b) Purification, structure and in vitro molecular-chaperone activity of Artemia p26, a small heat-shock/alpha-crystallin protein. Eur J Biochem 243:225–232PubMedCrossRefGoogle Scholar
  61. Madin KAC, Crowe JH (1975) Anhydrobiosis in nematodes – carbohydrate and lipid-metabolism during dehydration. J Exp Zool 193:335–342CrossRefGoogle Scholar
  62. McGee B, Schill RO, Tunnacliffe A (2004) Hydrophilic proteins in invertebrate anhydrobiosis. Integr Comp Biol 44:679–679Google Scholar
  63. Neumann S, Reuner A, Brümmer F, Schill RO (2009) DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A Mol Integr Physiol 153(4):425–429PubMedCrossRefGoogle Scholar
  64. Okuda T, Watanabe M, Kikawada T, Fujita A, Forczek E (2004) Cryptobiosis in the african chironomid: Physiological mechanism to survive complete dehydration. Proc Arthropod Embryol Soc Jpn 39:1–7Google Scholar
  65. Potts M (2001) Desiccation tolerance: a simple process? Trends Microbiol 9:553–559PubMedCrossRefGoogle Scholar
  66. Örstan A (1998) Factors affecting long-term survival of dry bdelloid rotifers: a preliminary study. Hydrobiologia 387/388:327–331CrossRefGoogle Scholar
  67. Rahm P (1921) Effect of very low temperatures on the fauna of moss. Proc K Ned Akad Wet Ser C Biol Med Sci 23:235–248Google Scholar
  68. Ramløv H, Westh P (2001) Cryptobiosis in the eutardigrade Adorybiotus (Richtersius) coronifer: Tolerance to alcohols, temperature and de novo protein synthesis. Zool Anz 240:517–523CrossRefGoogle Scholar
  69. Rebecchi L, Guidetti R, Borsari S, Altiero T, Bertolani R (2006) Dynamics of long-term anhydrobiotic survival of lichen-dwelling tardigrades. Hydrobiologia 558:23–30CrossRefGoogle Scholar
  70. Ricci C (1998) Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia 387(388):321–326CrossRefGoogle Scholar
  71. Ricci C, Caprioli M (1998) Stress during dormancy: Effect on recovery rates and life-history traits of anhydrobiotic animals. Aquat Ecol 32:353–359CrossRefGoogle Scholar
  72. Ricci C, Caprioli M (2005) Anhydrobiosis in bdelloid species, populations and individuals. Integr Comp Biol 45:759–763PubMedCrossRefGoogle Scholar
  73. Ricci C, Covino C (2005) Anhydrobiosis of Adineta ricciae: Costs and Benefits. Hydrobiologia 546:307–314CrossRefGoogle Scholar
  74. Ricci C, Pagani M (1997) Desiccation of Panagrolaimus rigidus (nematoda): Survival, reproduction and the influence on the internal clock. Hydrobiologia 347:1–13CrossRefGoogle Scholar
  75. Ricci C, Vaghi L, Manzini ML (1987) Desiccation of rotifers (Macrotrachela quadricornifera): Survival and reproduction. Ecology 68:1488–1494CrossRefGoogle Scholar
  76. Sakurai M, Furuki T, K-i A, Tanaka D, Nakahara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci USA 105:5093–5098PubMedCrossRefGoogle Scholar
  77. Schill RO, Fritz GB (2008) Desiccation tolerance in embryonic stages of the tardigrade Milnesium tardigradum. J Zool (Lond) 276:103–107CrossRefGoogle Scholar
  78. Schill R, Steinbrück G, Köhler H (2004) Stress gene (hsp70) sequences and quantitative expression in Milnesium tardigradum (Tardigrada) during active and cryptobiotic stages. J Exp Biol 207:1607–1613PubMedCrossRefGoogle Scholar
  79. Schill RO, Neumann S, Reuner A, Brümmer F (2008) Detection of DNA damage with single-cell gel electrophoresis in anhydrobiotic tardigrades. Comp Biochem Physiol A Comp Physiol 151:S32Google Scholar
  80. Schöneich C (1999) Reactive oxygen species and biological aging: amechanistical approach. Exp Gerontol 34:19–34CrossRefGoogle Scholar
  81. Schultze CAS (1834) Macrobiotus hufelandii, animale e crustaceorum classe novum, Berlin, p 8Google Scholar
  82. Spallanzani L (1776) Opuscoli di Fisica Animale e Vegetabile. Modena: Società Tipografica, pp 203–285Google Scholar
  83. Sun Y, MacRae TH (2005) Small heat shock proteins: molecular structure and chaperone function. Cell Mol Life Sci 62:2460–2476PubMedCrossRefGoogle Scholar
  84. Sun WQ, Irving TC, Leopold AC (1984) The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance. Physiol Plant 90(4):621–628CrossRefGoogle Scholar
  85. Tomos D (1992) Life without water. Curr Biol 2:594–596PubMedCrossRefGoogle Scholar
  86. Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812PubMedCrossRefGoogle Scholar
  87. Tunnacliffe A, Lapinski J, McGee B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 546:315–321CrossRefGoogle Scholar
  88. van Breukelen F, Hand SC (2000) Characterization of ATP-dependent proteolysis in embryos of the brine shrimp, Artemia franciscana. J Comp Physiol B 170:125–133PubMedCrossRefGoogle Scholar
  89. van Breukelen F, Maier R, Hand SC (2000) Depression of nuclear transcription and extension of mRNA half-life under anoxia in Artemia franciscana embryos. J Exp Biol 203:1123–1130PubMedGoogle Scholar
  90. van Leeuwenhoek A (1702) On certain animalcules found in the sediments in gutters of the roofs of houses. Letter 144. The Selected Works of Anton van Leeuwenhoek, London, pp 207–213Google Scholar
  91. Vertucci CW, Farrant JM (1995) Acquisition and loss of desiccation Marcel Dekker: New YorkGoogle Scholar
  92. Watanabe M, Kikawada T, Minagawa N, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802PubMedGoogle Scholar
  93. Watanabe M, Kikawada T, Okuda T (2003) Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of Polypedilum vanderplanki. J Exp Biol 206:2281–2286PubMedCrossRefGoogle Scholar
  94. Webb SJ (1964) Bound water, metabolites and genetic continuity. Nature 203:374–377PubMedCrossRefGoogle Scholar
  95. Webb SJ, Dumasia MD, Bhorjee JS (1965) Bound Water, Inositol, and the Biosynthesis of Temperate and Virulent Bacteriophages by Air-Dried Escherichia coli. Can J Microbiol 11:141–150PubMedCrossRefGoogle Scholar
  96. Westh P, Ramlov H (1991) Trehalose accumulation in the tardigrade Adorybiotus coronifer during anhydrobiosis. J Exp Zool 258:303–311CrossRefGoogle Scholar
  97. Westh P, Ramløv H (1988) Cryptobiosis in Arctic tardigrades with special attention to the appearance of trehalose. In: Höpner Petersen G (ed) Grönland Exkursion 2.–25., August 1987. Institut für Polarökologie, Kiel, pp 227–245Google Scholar
  98. Wharton DA (2002) Nematode survival strategies. In: Lee DL (ed) The biology of nematodes. Taylor and Francis, London, pp 389–411Google Scholar
  99. Womersley C (1981) Biochemical and physiological aspects of anhydrobiosis. Comp Biochem Physiol B Biochem Mol Biol 70:669–678Google Scholar
  100. Wright JC, Westh P, Ramlov H (1992) Cryptobiosis in Tardigrada. Biol Rev 67:1–29CrossRefGoogle Scholar
  101. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217:1214–1222PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Zoology, Biological InstituteUniversity of StuttgartStuttgartGermany

Personalised recommendations