Dormancy in Plant Seeds

  • Henk W. M. Hilhorst
  • William E. Finch-Savage
  • Julia Buitink
  • William Bolingue
  • Gerhard Leubner-Metzger
Chapter
Part of the Topics in Current Genetics book series (TCG, volume 21)

Abstract

Seed dormancy has been studied intensely over the past decades and, at present, knowledge of this plant trait is at the forefront of plant biology. The main model species is Arabidopsis thaliana, an annual weed, possessing nondeep physiological dormancy. This overview presents the state-of-the-art of seed dormancy research, focusing mainly on physiological and molecular-genetic aspects in this species. It has become clear that, like in many other organisms, the dormancy and stress responses are tightly associated in seeds. The plant hormones abscisic acid and gibberellins play a pivotal role in the acquisition of developmental arrest or repression of metabolic inactivity, respectively. Some attention is given to the overlapping dormancy and stress responses, commonly studied in many other organisms but only marginally in seeds.

References

  1. Achard P, Renou JP, Berthome R, Harberd NP, Genschik P (2008) Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr Biol 18:656–660PubMedCrossRefGoogle Scholar
  2. Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488PubMedCrossRefGoogle Scholar
  3. Alonso-Blanco C, Bentsink L, Hanhart CJ, Blankestijn de Vries H, Koornneef M (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164:711–729PubMedGoogle Scholar
  4. Amen RD (1968) A model of seed dormancy. Bot Rev 34:1–31CrossRefGoogle Scholar
  5. Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107CrossRefGoogle Scholar
  6. Baskin CC, Baskin JM (1998) Seeds; ecology, biogeography and evolution of dormancy and germination. Academic, San DiegoGoogle Scholar
  7. Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16Google Scholar
  8. Bassel GW, Zielinska E, Mullen RT, Bewley JD (2004) Down-regulation of DELLA genes is not essential for germination of tomato, soybean, and Arabidopsis seeds. Plant Physiol 136:2782–2789PubMedCrossRefGoogle Scholar
  9. Bassel GW, Mullen RT, Bewley JD (2006) ABI3 expression ceases following, but not during, germination of tomato and Arabidopsis seeds. J Exp Bot 57:1291–1297PubMedCrossRefGoogle Scholar
  10. Batlla D, Benech-Arnold RL (2006) The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Sci Res 16:47–59CrossRefGoogle Scholar
  11. Bentsink L, Koornneef M (2008) Seed dormancy and germination. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MD. doi:10.1199/tab.0119Google Scholar
  12. Bentsink L, Jowett J, Hanhart CJ, Koornneef M (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103:17042–17047PubMedCrossRefGoogle Scholar
  13. Bethke PC, Libourel IGL, Aoyama N, Chung Y-Y, Still DW, Jones RL (2007) The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiol 143:1173–1188PubMedCrossRefGoogle Scholar
  14. Bewley JD (1997a) Breaking down the walls – a role for endo-β-mannanase in release from seed dormancy? Trends Plant Sci 2:464–469CrossRefGoogle Scholar
  15. Bewley JD (1997b) Seed germination and dormancy. Plant Cell 9:1055–1066PubMedCrossRefGoogle Scholar
  16. Bove J, Lucas P, Godin B, Ogé L, Jullien M, Grappin P (2005) Gene expression analysis by cDNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia. Plant Mol Biol 57:93–612CrossRefGoogle Scholar
  17. Bradford KB, Nonogaki H (2007) Seed development, dormancy and germination. Annual plant reviews. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  18. Buitink J, Leprince O (2004) Glass formation in plant anhydrobiotes: survival in the dry state. Cryobiology 48:215–228PubMedCrossRefGoogle Scholar
  19. Buitink J, Leprince O, Hemminga MA, Hoekstra FA (2000) Molecular mobility in the cytoplasm: a new approach to describe and predict lifespan of dry germplasm. Proc Natl Acad Sci USA 97:2385–2390PubMedCrossRefGoogle Scholar
  20. Buitink J, Ly Vu B, Satour P, Leprince O (2003) A physiological model to study the re-establishment of desiccation tolerance in germinated radicles of Medicago truncatula Gaertn. seeds. Seed Sci Res 13:273–286CrossRefGoogle Scholar
  21. Buitink J, Leger JL, Guisle I, Ly-Vu B, Wuillème S, Lamirault G, Le Bars A, Le Meur N, Becker A, Küster K, Leprince O (2006) Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation sensitive to -tolerant stages in Medicago truncatula seeds. Plant J 47:735–750PubMedCrossRefGoogle Scholar
  22. Cadman CSC, Toorop PE, Hilhorst HWM, Finch-Savage WE (2006) Gene expression profiles of Arabidopsis Cvi seed during cycling through dormant and non-dormant states indicate a common underlying dormancy control mechanism. Plant J 46:805–822PubMedCrossRefGoogle Scholar
  23. Cao D, Hussain A, Cheng H, Peng J (2005) Loss of function of four DELLA genes leads to light- and gibberellin-independent seed germination in Arabidopsis. Planta 223:105–113PubMedCrossRefGoogle Scholar
  24. Cao DN, Cheng H, Wu W, Soo HM, Peng JR (2006) Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed germination and floral development. Plant Physiol 142:509–525PubMedCrossRefGoogle Scholar
  25. Carrera E, Holman T, Medhurst A, Peer W, Schmuths H, Footitt S, Theodoulou FL, Holdsworth MJ (2007) Gene expression profiling reveals defined functions of the ABC transporter COMATOSE late in phase II of germination. Plant Physiol 143:1669–1679PubMedCrossRefGoogle Scholar
  26. Carrera E, Holman T, Medhurst A, Dietrich D, Footitt S, Theodoulou FL, Holdsworth MJ (2008) Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J 53:214–224PubMedCrossRefGoogle Scholar
  27. Catusse J, Job C, Job D (2008a) Transcriptome- and proteome-wide analyses of seed germination. C R Biol 331:815–822PubMedCrossRefGoogle Scholar
  28. Catusse J, Strub J-M, Job C, Van Dorsselaer A, Job D (2008b) Proteome-wide characterization of sugarbeet seed vigour and its tissue specific expression. Proc Natl Acad Sci USA 105:10262–10267PubMedCrossRefGoogle Scholar
  29. Chiang GCK, Barua D, Kramer EM, Amasino RM, Donohue K (2009) Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 106:11661–11666PubMedCrossRefGoogle Scholar
  30. Chibani K, Ali-Rachedi S, Job C, Job D, Jullien M, Grappin P (2006) Proteomic analysis of seed dormancy in Arabidopsis. Plant Physiol 142:1493–1510PubMedCrossRefGoogle Scholar
  31. Chiwocha SDS, Cutler AJ, Abrams SR, Ambrose SJ, Yang J, Ross ARS, Kermode AR (2005) The etr1-2 mutation in Arabidopsis thaliana affects the abscisic acid, auxin, cytokinin and gibberellin metabolic pathways during maintenance of seed dormancy, moist-chilling and germination. Plant J 42:35–48PubMedCrossRefGoogle Scholar
  32. Clerkx EJM, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De Vries H, Groot SP, Vreugdenhil D, Koornneef M (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135:432–443PubMedCrossRefGoogle Scholar
  33. Corbineau F, Bianco J, Garello G, Come D (2002) Breakage of Pseudotsuga menziesii seed dormancy by cold treatment as related to changes in seed ABA sensitivity and ABA levels. Physiol Plant 114:313–319PubMedCrossRefGoogle Scholar
  34. da Silva EAA, Toorop PE, van Aelst AC, Hilhorst HWM (2004) Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination. Planta 220:251–261PubMedCrossRefGoogle Scholar
  35. Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424PubMedCrossRefGoogle Scholar
  36. Debeaujon I, Léon-Kloosterziel KM, Koornneef M (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol 122:403–413PubMedCrossRefGoogle Scholar
  37. Faria JMR, Buitink J, van Lammeren AAM, Hilhorst HWM (2005) Changes in DNA and microtubules during loss and re-establishment of desiccation tolerance in germinating Medicago truncatula seeds. J Exp Bot 56:2119–2130PubMedCrossRefGoogle Scholar
  38. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501–523PubMedCrossRefGoogle Scholar
  39. Finch-Savage WE, Cadman CSC, Toorop PE, Lynn JR, Hilhorst HWM (2007) Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J 51:60–78PubMedCrossRefGoogle Scholar
  40. Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415PubMedCrossRefGoogle Scholar
  41. Gallardo K, Job C, Groot SPC, Puype M, Demol H, Vandekerckhove J, Job D (2001) Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol 126:835–848PubMedCrossRefGoogle Scholar
  42. Grappin P, Bouinot D, Sotta B, Miginiac E, Jullien M (2000) Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta 210:279–285PubMedCrossRefGoogle Scholar
  43. Hilhorst HWM (1995) A critical update on seed dormancy. I. Primary dormancy. Seed Sci Res 5:61–73CrossRefGoogle Scholar
  44. Hilhorst HWM (2007) Definition and hypotheses of seed dormancy. In: Bradford KJ, Nonogaki H (eds) Seed development, dormancy and germination. Annual plant reviews, vol 27. Blackwell, Sheffield, UK, pp 50–71CrossRefGoogle Scholar
  45. Holdsworth MJ, Bentsink L, Soppe WJJ (2008a) Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. New Phytol 179:33–54PubMedCrossRefGoogle Scholar
  46. Holdsworth MJ, Finch-Savage WE, Grappin P, Job D (2008b) Post-genomics dissection of seed dormancy and germination. Trends Plant Sci 13:7–13PubMedCrossRefGoogle Scholar
  47. Ikuma H, Thimann KV (1963) The role of the seed-coats in germination of photosensitive lettuce seeds. Plant Cell Physiol 4:169–185Google Scholar
  48. Iuchi S, Suzuki H, Kim Y-C, Iuchi A, Kuromori T, Ueguchi-Tanaka M, Asami T, Yamaguchi I, Matsuoka M, Kobayashi M, Nakajima M (2007) Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. Plant J 50:958–966PubMedCrossRefGoogle Scholar
  49. Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802PubMedCrossRefGoogle Scholar
  50. Karssen CM, Laçka E (1986) A revision of the hormone balance theory of seed dormancy: studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana. In: Bopp M (ed) Plant growth substances 1985. Springer, Berlin, pp 315–323CrossRefGoogle Scholar
  51. Koornneef M, Bentsink L, Hilhorst H (2002) Seed dormancy and germination. Curr Opin Plant Biol 5:33–36PubMedCrossRefGoogle Scholar
  52. Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Ann Rev Plant Biol 55:141–172CrossRefGoogle Scholar
  53. Krock B, Schmidt S, Hertweck C, Baldwin IT (2002) Vegetation-derived abscisic acid and four terpenes enforce dormancy in seeds of the post-fire annual, Nicotiana attenuata. Seed Sci Res 12:239–252CrossRefGoogle Scholar
  54. Kucera B, Cohn MA, Leubner-Metzger G (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281–307CrossRefGoogle Scholar
  55. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656PubMedCrossRefGoogle Scholar
  56. Laserna MP, Sánchez RA, Botto JF (2008) Light-related loci controlling seed germination in Ler x Cvi and Bay-0 x Sha recombinant inbred-line populations of Arabidopsis thaliana. Ann Bot 102:631–642PubMedCrossRefGoogle Scholar
  57. Le Page-Degivry MT, Bianco J, Barthe P, Garello G (1996) Change in hormone sensitivity in relation to the onset and breaking of sunflower embryo dormancy. In: Lang GA (ed) Plant dormancy: physiology, biochemistry and molecular biology. CAB International, Wallingford, pp 221–231Google Scholar
  58. Lee SC, Cheng H, King KE, Wang WF, He YW, Hussain A, Lo J, Harberd NP, Peng JR (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 16:646–658PubMedCrossRefGoogle Scholar
  59. Leprince O, Vertucci CW (1995) A calorimetric study of the glass-transition behaviors in axes of bean-seeds with relevance to storage stability. Plant Physiol 109:1471–1481PubMedGoogle Scholar
  60. Leubner-Metzger G (2002) Seed after-ripening and over-expression of class I β-1, 3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Planta 215:959–968PubMedCrossRefGoogle Scholar
  61. Leubner-Metzger G (2003) Functions and regulation of β-1, 3-glucanase during seed germination, dormancy release and after-ripening. Seed Sci Res 13:17–34CrossRefGoogle Scholar
  62. Leubner-Metzger G (2005) β-1, 3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening. Plant J 41:133–145PubMedCrossRefGoogle Scholar
  63. Leubner-Metzger G, Meins F Jr (2000) Sense transformation reveals a novel role for class I β-1, 3-glucanase in tobacco seed germination. Plant J 23:215–221PubMedCrossRefGoogle Scholar
  64. Liu P-P, Koizuka N, Homrichhausen TM, Hewitt JR, Martin RC, Nonogaki H (2005a) Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes. Plant J 41:936–944PubMedCrossRefGoogle Scholar
  65. Liu P-P, Koizuka N, Martin RC, Nonogaki H (2005b) The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. Plant J 44:960–971PubMedCrossRefGoogle Scholar
  66. Liu Y, Koornneef M, Soppe WJJ (2007) The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rod4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell 19:433–444PubMedCrossRefGoogle Scholar
  67. Manz B, Müller K, Kucera B, Volke F, Leubner-Metzger G (2005) Water uptake and distribution in germinating tobacco seeds investigated in vivo by nuclear magnetic resonance imaging. Plant Physiol 138:1538–1551PubMedCrossRefGoogle Scholar
  68. Miura K, Lin SY, Yano M, Nagamine T (2002) Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor Appl Gen 104:981–986CrossRefGoogle Scholar
  69. Müller K, Tintelnot S, Leubner-Metzger G (2006) Endosperm-limited Brassicaceae seed germination: abscisic acid inhibits embryo-induced endosperm weakening of Lepidium sativum (cress) and endosperm rupture of cress and Arabidopsis thaliana. Plant Cell Physiol 47:864–877PubMedCrossRefGoogle Scholar
  70. Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709PubMedCrossRefGoogle Scholar
  71. Nambara E, Marion-Poll A (2003) ABA action and interactions in seeds. Trends Plant Sci 8:213–217PubMedCrossRefGoogle Scholar
  72. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell 15:1591–1604PubMedCrossRefGoogle Scholar
  73. Oh E, Kim J, Park E, Kim J-I, Kang C, Choi G (2004) PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 16:3045–3058PubMedCrossRefGoogle Scholar
  74. Ooms JJJ, Leon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (a comparative study using abscisic acid-insensitive abi3 mutants). Plant Physiol 102:1185–1191PubMedGoogle Scholar
  75. Oracz K, Bouteau HE-M, Farrant JM, Cooper K, Belghazi M, Job C, Job D, Corbineau F, Bailly C (2007) ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J 50:52–465CrossRefGoogle Scholar
  76. Peeters AJM, Blankestijn-DeVries H, Hanhart CJ, Leon-Kloosterziel KM, Zeevaart JAD, Koornneef M (2002) Characterization of mutants with reduced seed dormancy at two novel rdo loci and a further characterization of rdo1 and rdo2 in Arabidopsis. Physiol Plant 115:604–612PubMedCrossRefGoogle Scholar
  77. Penfield S, Josse E-M, Kannangara R, Gilday AD, Halliday KJ, Graham IA (2005) Cold and light control seed germination through the bHLH transcription factor SPATULA. Current Biol 15:1998–2006CrossRefGoogle Scholar
  78. Penfield S, Li Y, Gilday AD, Graham S, Graham IA (2006) Arabidopsis ABA INSENSITIVE4 regulates lipid mobilization in the embryo and reveals repression of seed germination by the endosperm. Plant Cell 18:1887–1899PubMedCrossRefGoogle Scholar
  79. Piskurewicz U, Jikumaru Y, Kinoshita N, Nambara E, Kamiya Y, Lopez-Molina L (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20:2729–2745PubMedCrossRefGoogle Scholar
  80. Rajjou L, Gallardo K, Debeaujon I, Vandekerckhove J, Job C, Job D (2004) The effect of alpha-amanitin on the Arabidopsis seed proteome highlights the distinct roles of stored and neosynthesized mRNAs during germination. Plant Physiol 134:1598–1613PubMedCrossRefGoogle Scholar
  81. Richards DE, King KE, Aitali T, Harberd NP (2001) How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Ann Rev Plant Physiol Plant Mol Biol 52:67–88CrossRefGoogle Scholar
  82. Rohde A, Kurup S, Holdsworth M (2000) ABI3 emerges from the seed. Trends Plant Sci 5:418–419PubMedCrossRefGoogle Scholar
  83. Schwachtje J, Baldwin IT (2004) Smoke exposure alters endogenous gibberellin and abscisic acid pools and gibberellin sensitivity while eliciting germination in the post-fire annual, Nicotiana attenuata. Seed Sci Res 14:51–60CrossRefGoogle Scholar
  84. Shen-Miller J, Mudgett MB, Schopf JW, Clarke S, Berger R (1995) Exceptional seed longevity and robust growth: ancient sacred lotus from China. Am J Bot 82:1367–1380CrossRefGoogle Scholar
  85. Sliwinska E, Jendrzejczak E (2002) Sugar-beet seed quality and DNA synthesis in the embryo in relation to hydration-dehydration cycles. Seed Sci Technol 30:597–608Google Scholar
  86. Stupnikova I, Benamar A, Tolleter D, Grelet J, Borovskii G, Dorne A-J, Macherel D (2006) Pea seed mitochondria are endowed with a remarkable tolerance to extreme physiological temperatures. Plant Physiol 140:326–335PubMedCrossRefGoogle Scholar
  87. Tamura N, Yoshida T, Tanaka A, Sasaki R, Bando A, Toh S, Lepiniec L, Kawakami N (2006) Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana. Plant Cell Physiol 47:1081–1094PubMedCrossRefGoogle Scholar
  88. Teng S, Rognoni S, Bentsink L, Smeekens S (2008) The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signalling pathway, and enhances sugar sensitivity by stimulating ABI4 expression. Plant J 55:372–381PubMedCrossRefGoogle Scholar
  89. Toorop PE, van Aelst AC, Hilhorst HWM (2000) The second step of the biphasic endosperm cap weakening that mediates tomato (Lycopersicon esculentum) seed germination is under control of ABA. J Exp Bot 51:1371–1379PubMedCrossRefGoogle Scholar
  90. Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008–1019PubMedCrossRefGoogle Scholar
  91. Walters C (2004) Temperature dependency of molecular mobility in preserved seeds. Biophys J 86:1253–1258PubMedCrossRefGoogle Scholar
  92. Wen CK, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:87–100PubMedCrossRefGoogle Scholar
  93. Yamaguchi S, Kamiya Y (2002) Gibberellins and light-stimulated seed germination. J Plant Growth Regul 20:369–376CrossRefGoogle Scholar
  94. Yamaguchi S, Smith MW, Brown RG, Kamiya Y, Sun T (1998) Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:2115–2126PubMedGoogle Scholar
  95. Yamaguchi S, Kamiya Y, Sun TP (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J 28:443–453PubMedCrossRefGoogle Scholar
  96. Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Henk W. M. Hilhorst
    • 1
  • William E. Finch-Savage
    • 2
  • Julia Buitink
    • 3
  • William Bolingue
    • 3
  • Gerhard Leubner-Metzger
    • 4
  1. 1.Lab of Plant PhysiologyWageningen UniversityWageningenThe Netherlands
  2. 2.Warwick HRIWarwick UniversityWarwickUK
  3. 3.UMR 1191 Molecular Seed PhysiologyINRAAngersFrance
  4. 4.Institut fuer Biologie II, Botanik/PflanzenphysiologieAlbert-Ludwigs-Universitaet FreiburgFreiburg i. Br.Germany

Personalised recommendations