Skip to main content

Mammalian Hibernation: Physiology, Cell Signaling, and Gene Controls on Metabolic Rate Depression

  • Chapter
  • First Online:

Part of the book series: Topics in Current Genetics ((TCG,volume 21))

Abstract

During the hibernating season, small mammals may suppress their metabolic rate during cyclic periods of deep torpor by as much as 99% as compared with normothermia. Endocrine regulation of metabolic depression is still poorly understood but recent studies suggest involvement of hormones including iodothyronamine, leptin, and ghrelin. At the intracellular level, suppression of many metabolic functions is achieved via reversible protein phosphorylation of metabolic enzymes, protein synthesis translation factors, and ion pumps. Potential roles for signaling enzymes such as the AMP-activated protein kinase in the coordination of metabolic suppression have been analyzed. Recent advances in the control of global gene expression have identified participating mechanisms including histone modifications that affect chromatin structure, SUMOylation to suppress transcription factor action, and differential regulation of mRNA transcripts by interaction with microRNA species. However, despite global transcriptional suppression, selected transcription factors are active during torpor bouts triggering the up-regulation of specific genes that serve the hibernation phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abnous K, Storey KB (2007) Regulation of skeletal muscle creatine kinase in a hibernating mammal. Arch Biochem Biophys 467:10–19

    Article  PubMed  CAS  Google Scholar 

  • Abnous K, Storey KB (2008) Skeletal muscle hexokinase: regulation in mammalian hibernation. Mol Cell Biochem 319:41–50

    Article  PubMed  CAS  Google Scholar 

  • Abnous K, Dieni CA, Storey KB (2008) Regulation of Akt during hibernation in Richardson’s ground squirrels. Biochim Biophys Acta 1780:185–193

    Article  PubMed  CAS  Google Scholar 

  • Andrews MT, Squire TL, Bowen CM, Rollins MB (1998) Low-temperature carbon utilization is regulated by novel gene activity in the heart of a hibernating mammal. Proc Natl Acad Sci USA 95:8392–8397

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bartrons M, Ortega E, Obach M, Calve MN, Navarro-Sabate A, Bartrons R (2004) Activation of AMP-dependent protein kinase by hypoxia and hypothermia in the liver of frog Rana perezi. Cryobiology 49:190–194

    Article  PubMed  CAS  Google Scholar 

  • Berriel Diaz M, Lange M, Heldmaier G, Klingenspor M (2004) Depression of transcription and translation during daily torpor in the Djungarian hamster (Phodopus sungorus). J Comp Physiol B 174:495–502

    Article  PubMed  CAS  Google Scholar 

  • Bhaumik SR, Smith E, Shilatifard A (2007) Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 14:1008–1016

    Article  PubMed  CAS  Google Scholar 

  • Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308:518

    Article  PubMed  CAS  Google Scholar 

  • Bocharova LS, Gordon RY, Arkhipov VI (1992) Uridine uptake and RNA synthesis in the brain of torpid and awakened ground squirrels. Comp Biochem Physiol B 101:189–192

    PubMed  CAS  Google Scholar 

  • Brauch KM, Dhruv ND, Hanse EA, Andrews MT (2005) Digital transcriptome analysis indicates adaptive mechanisms in the heart of a hibernating mammal. Physiol Genomics 23:227–234

    Article  PubMed  CAS  Google Scholar 

  • Braulke LJ, Klingenspor M, DeBarber A, Tobias SC, Grandy DK, Scanlan TS, Heldmaier G (2008) 3-Iodothyronamine: a novel hormone controlling the balance between glucose and lipid utilisation. J Comp Physiol B 178:167–177

    Article  PubMed  CAS  Google Scholar 

  • Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an Arctic hibernator. Am J Physiol 279:R255–R262

    CAS  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    PubMed  CAS  Google Scholar 

  • Chae HZ, Kim HJ, Kang SW, Rhee SG (1999) Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 45:101–112

    Article  PubMed  CAS  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  PubMed  CAS  Google Scholar 

  • Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Yuan L, Sun M, Zhang L, Zhang S (2008) Screening of hibernation-related genes in the brain of Rhinolophus ferrumequinum during hibernation. Comp Biochem Physiol B Biochem Mol Biol 149:388–393

    Article  PubMed  CAS  Google Scholar 

  • Cheng SW, Fryer LG, Carling D, Shepherd PR (2004) Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J Biol Chem 279:15719–15722

    Article  PubMed  CAS  Google Scholar 

  • Cheng AM, Byrom MW, Shelton J, Ford LP (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297

    Article  PubMed  CAS  Google Scholar 

  • Crawford FI, Hodgkinson CL, Ivanova EA, Logunova LB, Evans GJ, Steinlechner S, Loudon AS (2007) The influence of torpor on cardiac expression of genes involved in the circadian clock and protein turnover in the Siberian hamster (Phodopus sungorus). Physiol Genom 31:521–530

    Article  CAS  Google Scholar 

  • Dark J, Miller DJ, Licht P, Zucker I (1996) Glucoprivation counteracts effects of testosterone on daily torpor in Djungarian hamsters. Am J Physiol 270:R398–R403

    PubMed  CAS  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2005) Hibernation in the tropics: lessons from a primate. J Comp Physiol B 175:147–155

    Article  PubMed  Google Scholar 

  • Dausmann KH, Glos J, Heldmaier G (2009) Energetics of tropical hibernation. J Comp Physiol B 179:345–357

    Article  PubMed  CAS  Google Scholar 

  • Daval M, Diot-Dupuy F, Bazin R, Hainault I, Viollet B, Vaulont S, Hajduch E, Ferre P, Foufelle F (2005) Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes. J Biol Chem 280:25250–25257

    Article  PubMed  CAS  Google Scholar 

  • Ding XC, Weiler J, Großhans H (2009) Regulating the regulators: mechanisms controlling the maturation of microRNAs. Trends Biotechnol 27:27–36

    Article  PubMed  CAS  Google Scholar 

  • Drew KL, Tøien Ø, Rivera PM, Smith MA, Perry G, Rice ME (2002) Role of the antioxidant ascorbate in hibernation and warming from hibernation. Comp Biochem Physiol C 133:483–492

    CAS  Google Scholar 

  • Drew KL, Buck LC, Barnes BM, Christian SL, Rasley BT, Harris MB (2007) Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 102:1713–1726

    Article  PubMed  CAS  Google Scholar 

  • Eddy SF, Storey KB (2003) Differential expression of Akt, PPARγ, and PGC-1 during hibernation in bats. Biochem Cell Biol 81:269–274

    Article  PubMed  CAS  Google Scholar 

  • Eddy SF, Storey KB (2004) Up-regulation of fatty acid-binding proteins during hibernation in the little brown bat, Myotis lucifugus. Biochim Biophys Acta 1676:63–70

    Article  PubMed  CAS  Google Scholar 

  • Eddy SF, Storey KB (2007) p38MAPK regulation of transcription factor targets in muscle and heart of hibernating bats, Myotis lucifugus. Cell Biochem Funct 25:759–765

    Article  PubMed  CAS  Google Scholar 

  • Eddy SF, Storey KB (2008) Comparative molecular physiological genomics. Heterologous probing of cDNA arrays. Methods Mol Biol 410:81–110

    Article  PubMed  CAS  Google Scholar 

  • Eddy SF, McNally JD, Storey KB (2005) Up-regulation of a thioredoxin peroxidase-like protein, proliferation-associated gene, in hibernating bats. Arch Biochem Biophys 435:103–111

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt N, Heldmaier G, Exner C (2005) Adaptive mechanisms during food restriction in Acomys russatus: the use of torpor for desert survival. J Comp Physiol B 175:193–200

    Article  PubMed  CAS  Google Scholar 

  • Elvert R, Heldmaier G (2005) Cardiorespiratory and metabolic reactions during entrance into torpor in dormice, Glis glis. J Exp Biol 208:1373–1383

    Article  PubMed  Google Scholar 

  • Epperson LE, Dahl TA, Martin SL (2004) Quantitative analysis of liver protein expression during hibernation in the golden-mantled ground squirrel. Mol Cell Proteomics 3:920–933

    Article  PubMed  CAS  Google Scholar 

  • Fahlman A, Storey JM, Storey KB (2000) Gene up-regulation in heart during mammalian hibernation. Cryobiology 40:332–342

    Article  PubMed  CAS  Google Scholar 

  • Florant GL, Heller HC (1977) CNS regulation of body temperature in euthermic and hibernating marmots (Marmota flaviventris). Am J Physiol 232:R203–R208

    PubMed  CAS  Google Scholar 

  • Flynt AS, Lai EC (2008) Biological principles of microRNA-mediated regulation: shared themes amid diversity. Nat Rev Genet 9:831–842

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23:413–418

    Article  PubMed  CAS  Google Scholar 

  • Frerichs KU, Smith CB, Brenner M, DeGracia DJ, Krause GS, Marrone L, Dever TE, Hallenbeck JM (1998) Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proc Natl Acad Sci USA 95:14511–14516

    Article  PubMed  CAS  Google Scholar 

  • Fujii G, Nakamura Y, Tsukamoto D, Ito M, Shiba T, Takamatsu N (2006) CpG methylation at the USF-binding site is important for the liver-specific transcription of the chipmunk HP-27 gene. Biochem J 395:203–209

    Article  PubMed  CAS  Google Scholar 

  • Gammell P (2007) MicroRNAs: recently discovered key regulators of proliferation and apoptosis in animal cells. Cytotechnology 53:55–63

    Article  PubMed  CAS  Google Scholar 

  • Gauthier MS, Miyoshi H, Souza SC, Cacicedo JM, Saha AK, Greenberg AS, Ruderman NB (2008) AMP-activated protein kinase is activated as a consequence of lipolysis in the adipocyte: potential mechanism and physiological relevance. J Biol Chem 283:16514–16524

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Physiol B 158:25–37

    Article  PubMed  CAS  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  PubMed  CAS  Google Scholar 

  • Girdwood DW, Tatham MH, Hay RT (2004) SUMO and transcriptional regulation. Semin Cell Dev Biol 15:201–210

    Article  PubMed  CAS  Google Scholar 

  • Gluck EF, Stephens N, Swoap SJ (2006) Peripheral ghrelin deepens torpor bouts in mice through the arcuate nucleus neuropeptide Y signaling pathway. Am J Physiol 291:R1303–R1309

    CAS  Google Scholar 

  • Gorham DA, Bretscher A, Carey HV (1998) Hibernation induces expression of moesin in intestinal epithelial cells. Cryobiology 37:146–154

    Article  PubMed  CAS  Google Scholar 

  • Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev 74:1–40

    Article  PubMed  CAS  Google Scholar 

  • Gutman R, Choshniak I, Kronfeld-Schor N (2006) Defending body mass during food restriction in Acomys russatus: a desert rodent that does not store food. Am J Physiol 290:R881–R891

    CAS  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (2004) The AMP-activated protein kinase pathway – new players upstream and downstream. J Cell Sci 117:5479–5487

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8:774–785

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Elvert R (2004) How to enter torpor: thermodynamic and physiological mechanisms of metabolic depression. In: Barnes BM, Carey HV (eds) Life in the cold: evolution, mechanisms, adaptation, and application. Biological Papers of the University of Alaska, #27, Fairbanks, pp183–198

    Google Scholar 

  • Heldmaier G, Ruf T (1992) Body temperature and metabolic rate during natural hypothermia in endotherms. J Comp Physiol B 162:696–706

    Article  PubMed  CAS  Google Scholar 

  • Heldmaier G, Klingenspor M, Werneyer M, Lampi BJ, Brooks SP, Storey KB (1999) Metabolic adjustments during daily torpor in the Djungarian hamster. Am J Physiol 276:E896–E906

    PubMed  CAS  Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329

    Article  PubMed  Google Scholar 

  • Hittel D, Storey KB (2002a) The translation state of differentially expressed mRNAs in the hibernating thirteen-lined ground squirrel (Spermophilus tridecemlineatus). Arch Biochem Biophys 401:244–254

    Article  PubMed  CAS  Google Scholar 

  • Hittel DS, Storey KB (2002b) Differential expression of mitochondria-encoded genes in a hibernating mammal. J Exp Biol 205:1625–1631

    PubMed  CAS  Google Scholar 

  • Horman S, Browne G, Krause U, Patel J, Vertommen D, Bertrand L, Lavoinne A, Hue L, Proud C, Rider M (2002) Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis. Curr Biol 12:1419–1423

    Article  PubMed  CAS  Google Scholar 

  • Horman S, Beauloye C, Vertommen D, Vanoverschelde JL, Hue L, Rider MH (2003) Myocardial ischemia and increased heart work modulate the phosphorylation state of eukaryotic elongation factor-2. J Biol Chem 278:41970–41976

    Article  PubMed  CAS  Google Scholar 

  • Horman S, Hussain N, Dilworth SM, Storey KB, Rider MH (2005) Evaluation of the role of AMP-activated protein kinase and its downstream targets in mammalian hibernation. Comp Biochem Physiol B Biochem Mol Biol 142:374–382

    Article  PubMed  CAS  Google Scholar 

  • Hue L, Rider MH (2007) The AMP-activated protein kinase: more than an energy sensor. Essays Biochem 43:121–137

    Article  PubMed  CAS  Google Scholar 

  • Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Yanagawa T (2007) Stress-induced peroxiredoxins. Subcell Biochem 44:375–384

    Article  PubMed  Google Scholar 

  • Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y (2008) miR2 Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res 37:D98–D104. doi:10.1093/nar/gkn714

    Article  PubMed  CAS  Google Scholar 

  • Jibb LA, Richards JG (2008) AMP-activated protein kinase activity during metabolic rate depression in the hypoxic goldfish, Carassius auratus. J Exp Biol 211:3111–3122

    Article  PubMed  CAS  Google Scholar 

  • Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    Article  PubMed  CAS  Google Scholar 

  • Kim E, Du L, Bregman DB, Warren SL (1997) Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J Cell Biol 136:19–28

    Article  PubMed  CAS  Google Scholar 

  • Knight JE, Narus EN, Martin SL, Jacobson A, Barnes BM, Boyer BB (2000) mRNA stability and polysome loss in hibernating Arctic ground squirrels (Spermophilus parryii). Mol Cell Biol 20:6374–6379

    Article  PubMed  CAS  Google Scholar 

  • Lee YJ, Miyake S, Wakita H, McMullen DC, Azuma Y, Auh S, Hallenbeck JM (2007) Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells. J Cereb Blood Flow Metabol 27:950–962

    CAS  Google Scholar 

  • Lee K, Park JY, Yoo W, Gwag T, Lee JW, Byun MW, Choi I (2008) Overcoming muscle atrophy in a hibernating mammal despite prolonged disuse in dormancy: proteomic and molecular assessment. J Cell Biochem 104:642–656

    Article  PubMed  CAS  Google Scholar 

  • Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773

    Article  PubMed  CAS  Google Scholar 

  • Lyman CP (1958) Oxygen consumption, body temperature and heart rate of woodchucks entering hibernation. Am J Physiol 194:83–91

    PubMed  CAS  Google Scholar 

  • Lyman CP, O’Brien RC (1960) Circulatory changes in the thirteen-lined ground squirrel during the hibernation cycle. Bull Mus Comp Zool 124:353–372

    Google Scholar 

  • MacDonald JA, Storey KB (1998) cAMP-dependent protein kinase from brown adipose tissue: temperature effects on kinetic properties and enzyme role in hibernating ground squirrels. J Comp Physiol B 168:513–525

    Article  PubMed  CAS  Google Scholar 

  • MacDonald JA, Storey KB (1999) Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation. Biochem Biophys Res Commun 254:424–429

    Article  PubMed  CAS  Google Scholar 

  • MacDonald JA, Storey KB (2005) Mitogen-activated protein kinases and selected downstream targets display organ-specific responses in the hibernating ground squirrel. Int J Biochem Cell Biol 37:679–691

    Article  PubMed  CAS  Google Scholar 

  • Mack GS (2006) Epigenetic cancer therapy makes headway. J Natl Cancer Inst 98:1443–1444

    Article  PubMed  Google Scholar 

  • Mamady H, Storey KB (2006) Up-regulation of the endoplasmic reticulum molecular chaperone GRP78 during hibernation in thirteen-lined ground squirrels. Mol Cell Biochem 292:89–98

    Article  PubMed  CAS  Google Scholar 

  • Mamady H, Storey KB (2008) Coping with stress: expression of ATF4, ATF6 and downstream targets in organs of hibernating ground squirrels. Arch Biochem Biophys 477:77–85

    Article  PubMed  CAS  Google Scholar 

  • Martin SL, Epperson LE, Rose JC, Kurtz CC, Ané C, Carey HV (2008) Proteomic analysis of the winter-protected phenotype of hibernating ground squirrel intestine. Am J Physiol 295:R316–R328

    CAS  Google Scholar 

  • Matejkova O, Mustard KJ, Sponarova J, Flachs P, Rossmeisl M, Miksik I, Thomason-Hughes M, Hardie GD, Kopecky J (2004) Possible involvement of AMP-activated protein kinase in obesity resistance induced by respiratory uncoupling in white fat. FEBS Lett 569:245–248

    Article  PubMed  CAS  Google Scholar 

  • Milsom WK, Zimmer MB, Harris MB (2001) Vagal control of cardiorespiratory function in hibernation. Exp Physiol 86:791–796

    Article  PubMed  CAS  Google Scholar 

  • Morin P, Storey KB (2005) Cloning and expression of hypoxia-inducible factor 1α from the hibernating ground squirrel, Spermophilus tridecemlineatus. Biochim Biophys Acta 1729:32–40

    Article  PubMed  CAS  Google Scholar 

  • Morin P, Storey KB (2006) Evidence for a reduced transcriptional state during hibernation in ground squirrels. Cryobiology 53:310–318

    Article  PubMed  CAS  Google Scholar 

  • Morin P, Storey KB (2007) Antioxidant defense in hibernation: cloning and expression of peroxiredoxins from hibernating ground squirrels, Spermophilus tridecemlineatus. Arch Biochem Biophys 461:59–65

    Article  PubMed  CAS  Google Scholar 

  • Morin P, Dubuc A, Storey KB (2008a) Differential expression of microRNA species in organs of hibernating ground squirrels: a role in translational suppression during torpor. Biochim Biophys Acta 1779:628–633

    Article  PubMed  CAS  Google Scholar 

  • Morin P, Ni Z, McMullen DC, Storey KB (2008b) Expression of Nrf2 and its downstream gene targets in hibernating thirteen-lined ground squirrels, Spermophilus tridecemlineatus. Mol Cell Biochem 312:121–129

    Article  PubMed  CAS  Google Scholar 

  • Mulligan JD, Gonzalez AA, Stewart AM, Carey HV, Saupe KW (2007) Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse. J Physiol 580:677–684

    Article  PubMed  CAS  Google Scholar 

  • Nicol SC, Andersen NA (2000) Patterns of hibernation of echidnas in Tasmania. In: Heldmaier G, Klingenspor M (eds) Life in the Cold. Springer, Heidelberg, pp 21–28

    Google Scholar 

  • Ortmann S, Heldmaier G (2000) Regulation of body temperature and energy requirements of hibernating alpine marmots (Marmota marmota). Am J Physiol 278:R698–R704

    CAS  Google Scholar 

  • Osborne PG, Gao B, Hashimoto M (2004) Determination in vivo of newly synthesized gene expression in hamsters during phases of the hibernation cycle. Jpn J Physiol 54:295–305

    Article  PubMed  CAS  Google Scholar 

  • Proud CG (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403:217–234

    Article  PubMed  CAS  Google Scholar 

  • Rider MH (2008) Dealing with energy stress in hypometabolic states: role of the AMP-activated protein kinase. In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: torpor, hibernation and cryobiology. University of KwaZulu-Natal, Pietermaritzburg, pp 75–82

    Google Scholar 

  • Rider MH, Hussain N, Horman S, Dilworth SM, Storey KB (2006) Stress-induced activation of the AMP-activated protein kinase in the freeze-tolerant frog Rana sylvatica. Cryobiology 53:297–309

    Article  PubMed  CAS  Google Scholar 

  • Rider MH, Hussain N, Dilworth SM, Storey KB (2009) Phosphorylation of translation factors in response to anoxia in turtles, Trachemys scripta elegans: role of the AMP-activated protein kinase and target of rapamycin signalling pathways. Mol Cell Biochem 332:207–213

    Article  PubMed  CAS  Google Scholar 

  • Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D (2007) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J 403:139–148

    Article  PubMed  CAS  Google Scholar 

  • Sarraf SA, Stancheva I (2004) Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 15:595–605

    Article  PubMed  CAS  Google Scholar 

  • Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, Kruzich PJ, Frascarelli S, Crossley DA, Bunzow JR, Ronca-Testoni S, Lin ET, Hatton D, Zucchi R, Grandy DK (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10:638–642

    Article  PubMed  CAS  Google Scholar 

  • Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3:721–732

    Article  PubMed  CAS  Google Scholar 

  • Song X, Körtner G, Geiser F (1997) Thermal relations of metabolic rate reduction in a hibernating marsupial. Am J Physiol 273:R2097–R2104

    PubMed  CAS  Google Scholar 

  • Stenslokken KO, Ellefsen S, Stecyk JA, Dahl MB, Nilsson GE, Vaage JI (2008) Differential regulation of AMP-activated kinase and AKT kinase in response to oxygen availability in crucian carp (Carassius carassius). Am J Physiol 295:R1803–R1814

    Google Scholar 

  • Storey KB (1997) Metabolic regulation in mammalian hibernation: enzyme and protein adaptations. Comp Biochem Physiol 118:1115–1124

    Article  CAS  Google Scholar 

  • Storey KB (2004) Cold, ischemic organ preservation: lessons from natural systems. J Investig Med 52:315–322

    Article  PubMed  CAS  Google Scholar 

  • Storey KB (2008) Beyond gene chips: transcription factor profiling in freeze tolerance. In: Lovegrove BG, McKechnie AE (eds) Hypometabolism in animals: hibernation, torpor and cryobiology. University of KwaZulu-Natal, Pietermaritzburg, pp 101–108

    Google Scholar 

  • Storey KB, Storey JM (2004) Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev Camb Philos Soc 79:207–233

    Article  PubMed  Google Scholar 

  • Storey KB, Storey JM (2007) Putting life on ‘pause’ – molecular regulation of hypometabolism. J Exp Biol 210:1700–1714

    Article  PubMed  CAS  Google Scholar 

  • Swoap SJ (2008) The pharmacology and molecular mechanisms underlying temperature regulation and torpor. Biochem Pharmacol 76:817–824

    Article  PubMed  CAS  Google Scholar 

  • Swoap SJ, Rathvon M, Gutilla M (2007) AMP does not induce torpor. Am J Physiol 293:R468–R473

    Article  CAS  Google Scholar 

  • Tate PH, Bird AP (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3:226–231

    Article  PubMed  CAS  Google Scholar 

  • Van Breukelen F, Martin SL (2001) Translational initiation is uncoupled from elongation at 18°C during mammalian hibernation. Am J Physiol 281:R1374–R1379

    Google Scholar 

  • Van Breukelen F, Martin SL (2002) Reversible depression of transcription during hibernation. J Comp Physiol B 172:355–361

    Article  PubMed  CAS  Google Scholar 

  • Van Breukelen F, Sonenberg N, Martin SL (2004) Seasonal and state-dependent changes of eIF4E and 4E-BP1 during mammalian hibernation: implications for the control of translation during torpor. Am J Physiol 287:R349–R353

    Google Scholar 

  • Wang LCH (1979) Time patterns and metabolic rates of natural torpor in the Richardson’s ground squirrel. Can J Zool 57:149–155

    Article  Google Scholar 

  • Wieser W, Krumschnabel G (2001) Hierarchies of ATP-consuming processes: direct compared with indirect measurements, and comparative aspects. Biochem J 355:389–395

    Article  PubMed  CAS  Google Scholar 

  • Williams DR, Epperson LE, Li W, Hughes MA, Taylor R, Rogers J, Martin SL, Cossins AR, Gracey AY (2005) Seasonally hibernating phenotype assessed through transcript screening. Physiol Genomics 24:13–22

    Article  PubMed  Google Scholar 

  • Wilz M, Heldmaier G (2000) Comparison of hibernation, estivation and daily torpor in the edible dormouse, Glis glis. J Comp Physiol B 170:511–521

    Article  PubMed  CAS  Google Scholar 

  • Witters LA, Kemp BE, Means AR (2006) Chutes and Ladders: the search for protein kinases that act on AMPK. Trends Biochem Sci 31:13–16

    Article  PubMed  CAS  Google Scholar 

  • Xue B, Kahn BB (2006) AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 574:73–83

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Kaasik K, Blackburn MR, Lee CC (2006) Constant darkness is a circadian metabolic signal in mammals. Nature 439:340–343

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to J.M. Storey for editorial review of the manuscript. Research in the Storey lab was supported by a discovery grant from the Natural Sciences and Engineering Research Council of Canada; KBS holds the Canada Research Chair in Molecular Physiology. Research in the Rider laboratory was supported by the Interuniversity Attraction Poles Program – Belgian Science Policy (P5/05 and P6/28), the Directorate General Higher Education and Scientific Research, French Community of Belgium, the Fund for Medical Scientific Research (Belgium), and the EXGENESIS Integrated Project (LSHM-CT-2004-005272) from the European Commission. Research in the Heldmaier lab was supported by the Deutsche Forschungsgemeinschaft (DFG HE 990/9 and 10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Storey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Storey, K.B., Heldmaier, G., Rider, M.H. (2010). Mammalian Hibernation: Physiology, Cell Signaling, and Gene Controls on Metabolic Rate Depression. In: Lubzens, E., Cerda, J., Clark, M. (eds) Dormancy and Resistance in Harsh Environments. Topics in Current Genetics, vol 21. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12422-8_13

Download citation

Publish with us

Policies and ethics