Skip to main content

Visual Analytics of Urban Environments using High-Resolution Geographic Data

Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC,volume 0)

Abstract

High-resolution urban data at house level are essential for understanding the relationship between objects of the urban built environment (e.g. streets, housing types, public resources and open spaces). However, it is rather difficult to analyze such data due to the huge amount of urban objects, their multidimensional character and the complex spatial relation between them. In this paper we propose a methodology for assessing the spatial relation between geo-referenced urban environmental variables, in order to identify typical or significant spatial configurations as well as to characterize their geographical distribution. Configuration in this sense refers to the unique combination of different urban environmental variables. We structure the analytic process by defining spatial configurations, multidimensional clustering of the individual configurations, and identifying emerging patterns of interesting configurations. This process is based on the tight combination of interactive visualization methods with automatic analysis techniques. We demonstrate the usefulness of the proposed methods and methodology in an application example on the relation between street network topology and distribution of land uses in a city.

Keywords

  • Street Network
  • Urban Environment
  • Spatial Configuration
  • Betweenness Centrality
  • Closeness Centrality

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-12326-9_2
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-12326-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anselin, L. (1995) Local Indicators of Spatial Association – LISA, Geographical Analysis 27(2), 93–115.

    Google Scholar 

  • Bacao, F., Lobo, V., Painho, M. (2005). The Self-Organizing Map, the Geo-SOM, and Relevant Variants for Geo-Sciences. Computers & Geosciences, 31, 155–163.

    CrossRef  Google Scholar 

  • Benenson, I., & Omer, I. (2003). High-Resolution Census Data: A Simple Way to Make Them Useful. Data Science Journal 2 (26), 117-127.

    CrossRef  Google Scholar 

  • Cox, M. & Cox, M. (2001). Multidimensional Scaling. Chapman and Hall.

    Google Scholar 

  • Deboeck, G., Kohonen, T. (1998). Visual Explorations in Finance With Self-Organizing Maps. Springer.

    Google Scholar 

  • Elmqvist, N., Dragicevic, P., Fekete, J.-D (2008). Rolling the Dice: Multidimensional Visual Exploration Using ScatterPlot Matrix Navigation. IEEE Transactions on Visualization and Computer Graphics, 14, 1141–1148.

    Google Scholar 

  • Everitt, B. S. & Nicholls, P. (1975). Visual Techniques for Representing Multivariate Data. The Statistician, 24(1), 37-49.

    CrossRef  Google Scholar 

  • Fua, Y.-H., Ward, M., Rundensteiner, E. (1999). Hierarchical Parallel Coordinates for Exploration of Large Datasets. Proceedings of IEEE Conference on Visualization (VIS), 43-50.

    Google Scholar 

  • Guo, D., Chen, J., MacEachren, A. M., Liao, K (2006). A Visualization System for Space-Time and Multivariate Patterns (VIS-STAMP). IEEE Transactions on Visualization and Computer Graphics, 12(6):1461–1474.

    CrossRef  Google Scholar 

  • Hillier, B., Penn A., Hanson J., Grajewski T. and Xu J. (1993) Natural Movement: Configuration and Attraction in Urban Pedestrian Movement, Environment and Planning B, 20, pp. 29-66.

    CrossRef  Google Scholar 

  • Honkela, T., Kaski, S., Lagus, K., Kohonen, T. (1997). WEBSOM— Selforganizing Maps of Document Collections. Proceedings Workshop on Self-Organizing Maps, 310–315.

    Google Scholar 

  • Inselberg, A. & Dimsdale, B. (1990). Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry. Proceedings Conference on Visualization, 361–378.

    Google Scholar 

  • Jiang, B. (2007). A Topological Pattern of Urban Street Networks: Universality and Peculiarity. Physica A, 384, 647-655

    CrossRef  Google Scholar 

  • Jiang, B. & Harrie L. (2004) Selection of Streets from a Network Using Self-Organizing Maps, Transactions in GIS, 8(3): 335–350

    CrossRef  Google Scholar 

  • Jolliffe, I. (2002). Principal Components Analysis. Springer, 3rd edition.

    Google Scholar 

  • Kohonen, T. (2001). Self-Organizing Maps. Springer, 3rd edition.

    Google Scholar 

  • Kohonen, T., Hynninen, J., Kangas, J., Laaksonen, J. (1996). SomPak: The Self-Organizing Map Program Package. Helsinki University of Technology Technical Report.

    Google Scholar 

  • LeBlanc, J., Ward, M.O., Wittels, N (1990). Exploring N-dimensional Databases. Proceedings Conference on Visualization, 230 - 237.

    Google Scholar 

  • Omer, I., & Benenson I., (2002). Investigating Fine-Scale Residential Segregation by Means of Local Spatial Statistics. Geography Research Forum 22, 41-60.

    Google Scholar 

  • Porta, P. Crucitti, P. & Latora V. (2006). The network analysis of urban streets: A primal approach. Environment and Planning B: Planning and Design 2006, 33, 705–725

    CrossRef  Google Scholar 

  • Ratti C, Pulselli RM, Williams S, Frenchman D (2006) Mobile Landscapes: using location data from cell phones for urban analysis. Environment and Planning B: Planning and Design 33: 727-748

    CrossRef  Google Scholar 

  • Spielman, S. & Thill, J.-C. (2008). Social Area Analysis, Data Mining, and GIS. Computers, Environment and Urban Systems, 32, 110–122.

    CrossRef  Google Scholar 

  • Talen, E. (2003). Neighborhoods as Service Providers: a Methodology for Evaluating Pedestrian Access. Environment and Planning B: Planning and Design, 30, 181- 200.

    CrossRef  Google Scholar 

  • Talen, E., & Anselin, L. (1998). Assessing spatial equity: an evaluation of measures of accessibility to public playgrounds. Environment and Planning A, 30, 595–613.

    CrossRef  Google Scholar 

  • Van Long, T. & Linsen, L. (2009). MultiClusterTree: Interactive Visual Exploration of Hierarchical Clusters in Multidimensional Multivariate Data. Proceedings of Eurographics / IEEE Symposium on Visualization.

    Google Scholar 

  • Vesanto, J. (1999). SOM-based Data Visualization Methods. Intelligent Data Analysis, 3(2):111–126.

    CrossRef  Google Scholar 

  • Ware, C. (2004). Information Visualization: Perception for Design. Morgan Kaufmann, 2nd Ed.

    Google Scholar 

  • Wilkinson, L., Anand, A., Grossman, R. (2005). Graph-Theoretic Scagnostics. Proceedings of the IEEE Symposium on Information Visualization.

    Google Scholar 

  • Wong D.W.S, (2003) Spatial Decomposition of Segregation Indices: A framework toward measuring segregation at multiple levels, Geographical Analysis, 35 (3), 179-184.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bak, P., Omer, I., Schreck, T. (2010). Visual Analytics of Urban Environments using High-Resolution Geographic Data. In: Painho, M., Santos, M., Pundt, H. (eds) Geospatial Thinking. Lecture Notes in Geoinformation and Cartography, vol 0. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12326-9_2

Download citation