Skip to main content

A 7-Round Parallel Hardware-Saving Accelerator for Gaussian and DoG Pyramid Construction Part of SIFT

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5996))

Abstract

SIFT, short for Scale Invariant Feature Transform, is regarded as one of the most robust feature detection algorithms. The Gaussian and DoG Pyramid Construction part, functioning as computation basis and searching spaces for other parts, proves fatal to the system. In this paper, we present an FPGA-implementable hardware accelerator for this part. Stratified Gaussian Convolution scheme and 7-Round Parallel Computation scheme are introduced to reduce the hardware cost and improve process speed, meanwhile keeping high accuracy. In our experiment, our proposal successfully realizes a system with max clock frequency of 95.0 MHz, and on-system process speed of up to 21 fps for VGA format images. Hardware cost of Slice LUTs is reduced by 12.1% compared with traditional work. Accuracy is kept as high as 98.27% against original software solution. Our proposed structure proves to be suitable for real-time SIFT systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV 1999 Proceedings, Corgu, Greece, pp. 1150–1157 (1999)

    Google Scholar 

  2. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  3. Dermitzakis, K., McKenzie, E.: A gpu implementation of the sift algorithm: An msc project proposal (2007), www.inf.edu.ac.uk/events/jamboree/2007/Posters/k-dermizakis.dpf

  4. Sinha, S.N., Frahm, J.-M., Pollefeys, M., Genc, Y.: Gpu-based video feature tracking and matching. Technical Report TR, Department of Computer Science, UNC Chapel Hill 06(012) (2006)

    Google Scholar 

  5. Heymann, S., Muller, K., Smolic, A., Frohlich, B., Wiegand, T.: Sift implementation and optimization for general-purpose gpu. In: WSCG 2007 Proceedings, University of West Bohemia, Plzen, Campus Bory, p. G03 (2007)

    Google Scholar 

  6. Qiu, J., Huang, T., Ikenaga, T.: Hardware accelerator for feature point detection part of sift algorithm and corresponding hardware-friendly modification. In: SASIMI 2009 Proceedings, Okinawa, Japan, pp. 213–218 (2009)

    Google Scholar 

  7. Qiu, J., Huang, T., Ikenaga, T.: 1d-based 2d gaussian convolution unit based hardware accelerator for gaussian dog pyramid construction in sift. In: IEICE 2009 Proceedings, Matsuyama, Japan, pp. 1150–1157 (2009)

    Google Scholar 

  8. Qiu, J., Huang, T., Huang, Y., Ikenaga, T.: A hardware accelerator with variable pixel representation and skip mode prediction. In: MVA 2009 Proceedings, Tokyo, Japan, pp. 1150–1157 (2009)

    Google Scholar 

  9. Bonato, V., Marques, E., Constantinides, G.A.: A parallel hardware architecture for scale and rotation invariant feature detection. IEEE trans. on CSVT 18(12), 1703–1712 (2008)

    Google Scholar 

  10. Se, S., Ng, H.K., Jasiobedzki, P., Moyung, T.J.: Vision based modeling and localization for planetary exploration rovers. In: ICA 2004, p. 11 (2004)

    Google Scholar 

  11. Rob hess - school of eecs @ oregon state university, http://web.engr.oregonstate.edu/hess/

  12. Kawasaki, H., Furukawa, R.: Shape reconstruction from cast shadows using coplanarities and metric constraints. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 847–857. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qiu, J., Huang, T., Ikenaga, T. (2010). A 7-Round Parallel Hardware-Saving Accelerator for Gaussian and DoG Pyramid Construction Part of SIFT. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12297-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12296-5

  • Online ISBN: 978-3-642-12297-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics