Skip to main content

Disparity Estimation in a Layered Image for Reflection Stereo

  • Conference paper
  • 1639 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5996))

Abstract

By watching the reflection in the glass window, one can often observe a two-layered image consisting of a front-surface reflection from a glass and a rear-surface reflection through the glass. The transparent glass plate reflects and transmits the incident light from its front surface. The transmitted light is then reflected from the rear surface and is transmitted again to the air through the front surface. These two light paths create a layered image comprising two identical images with a specific displacement depending on the object range. Estimating the object range requires the accurate detection of the image shift in the layered image. This paper presents a study of the shift estimation method using Fourier transformation of the layered image. The maximum location in the Fourier transform of the Fourier power spectrum of the layered image indicates the image shift. Experimental results demonstrate the effectiveness of the method compared with a method using an autocorrelation function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cannon, M.: Blind deconvolution of spatially invariant image blurs with phase. Acoustics, Speech, and Signal Processing 24(1), 58–63 (1076)

    Google Scholar 

  2. Childers, D.G., Skinner, D.P., Kemerait, R.C.: The cepstrum: a guide to processing. Proc. of the IEEE 65(10), 1428–1443 (1977)

    Article  Google Scholar 

  3. Diamant, Y., Schechner, Y.Y.: Overcoming visual reverberations. In: CVPR (2008)

    Google Scholar 

  4. Gao, C., Ahuja, N.: A refractive camera for acquiring stereo and super-resolution images. In: CVPR, pp. 2316–2323 (2006)

    Google Scholar 

  5. Gennery, D.B.: Determination of optical transfer function by inspection of frequency-domain plot. Journal of the Optical Society of America 63(12), 1571–1577 (1973)

    Article  Google Scholar 

  6. Gluckman, J.M., Nayar, S.K.: Catadioptric stereo using planar mirrors. IJCV 44(1), 65–79 (2001)

    Article  MATH  Google Scholar 

  7. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. of the IEEE 66(1), 51–83 (1978)

    Article  Google Scholar 

  8. Lee, D.J., Krile, T.F., Mitra, S.: Power cepstrum and spectrum techniques applied to image registration. Applied Optics 27(6), 1099–1106 (1988)

    Article  Google Scholar 

  9. Miyazaki, D., Ikeuchi, K.: Shape estimation of transparent objects using inverse polarization ray tracing. PAMI 29(11), 2018–2029 (2007)

    Google Scholar 

  10. Oppenheim, A.V., Schafer, R.W.: From frequency to quefrency: a history of the cepstrum. IEEE Signal Processing Magazine 21(5), 95–106 (2004)

    Article  Google Scholar 

  11. Pachidis, T.P., Lygouras, J.N.: Pseudo-stereo vision system: a detailed study. Journal of Intelligent and Robotic Systems 42(2), 135–167 (2005)

    Article  Google Scholar 

  12. Shimizu, M., Okutomi, M.: Reflection stereo – novel monocular stereo using a transparent plate. In: Canadian conference on computer and robot vision, CRV (2006)

    Google Scholar 

  13. Shimizu, M., Okutomi, M.: Calibration and rectification for reflection stereo. In: CVPR (2008)

    Google Scholar 

  14. Sun, C.: Fast algorithms for stereo matching and motion estimation. In: Australia–Japan Advanced Workshop on Computer Vision, pp. 38–48 (2003)

    Google Scholar 

  15. Whitted, T.: An improved illumination model for shaded display. Communications of the ACM 23(6), 343–349 (1980)

    Article  Google Scholar 

  16. Yeshurun, Y., Schwartz, E.L.: Cepstral filtering on a columnar image architecture: a fast algorithm for binocular stereo segmentation. PAMI 11(7), 759–767 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shimizu, M., Okutomi, M., Jiang, W. (2010). Disparity Estimation in a Layered Image for Reflection Stereo. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12297-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12297-2_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12296-5

  • Online ISBN: 978-3-642-12297-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics