Skip to main content

Distinguishing Health Effects Among Different PM2.5 Components

  • Chapter
  • First Online:

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Researchers began to consistently find associations with adverse health risks of elevated PM2.5 (particulate matter 2.5 µm or less in diameter), measured as mass, in the 1990s. However, monitoring information was then available for few PM2.5 components. Advisory bodies such as the Clean Air Scientific Advisory Committee (1996) and the National Research Council (NRC) of the U.S. National Academies of Sciences (in 1998 and later) suggested the need to better understand which PM2.5 constituents are most or least harmful, to enable targeted control strategies. But how should researchers best distinguish risks of harm from different PM2.5 constituents in complex mixtures of primary and secondary particles?

Methodological issues may play a primary role in this research endeavor. Principles of methodology discussed herein include: (1) need for accurate exposure information in epidemiological studies; (2) using epidemiological studies which compare effects of a wide range of health-relevant pollutants against the same health endpoints in the same study; (3) recognition that a given source can emit several pollutants, and conversely that some common pollutants have multiple sources, but with different co-pollutants, thus creating the possibility that statistical associations with one pollutant could be attributable to co-emitted pollutant(s), perhaps unmeasured; and (4) accounting in some way for atmospheric chemical processes. Further, examining for a relevant pollutant both toxicology studies (in vitro and in vivo) and epidemiological studies (including population based and human panel studies reflecting use of these four principles), might provide the fullest evidentiary pathway to determining differential toxicological properties among PM2.5 components.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adar SD, Kaufman JD (2007) Cardiovascular disease and air pollutants: evaluating and improving epidemiological data implicating traffic exposure. Inhal Toxicol 19(Suppl 1):135–149

    Article  CAS  Google Scholar 

  • Bell ML, Ebisu K, Peng RD et al (2009) Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 179:1115–1120

    Article  CAS  Google Scholar 

  • Brown S, Frankel A, Raffuse SM et al (2007) Source apportionment of PM2.5 in Phoenix, Arizona, using positive matrix factorization. J Air Waste Manage Assoc 57:741–752

    Article  CAS  Google Scholar 

  • Clean Air Scientific Advisory Committee (1996) “Closure” letter to EPA Administrator Carol M Browner, signed June 13, 1996

    Google Scholar 

  • Chahine T, Baccerelli A, Litonjua A et al (2007) Particulate air pollution, oxidative stress genes, and heart rate variability in an elderly cohort. Environ Health Perspect 115:1617–1622

    Article  CAS  Google Scholar 

  • Creason J, Neas L, Walsh D et al (2001) Particulate matter and heart rate variability among elderly retirees: the Baltimore 1998 PM study. J Environ Expos Anal Environ Epidemiol 11:116–122

    Article  CAS  Google Scholar 

  • Delfino RJ, Staimer N, Tjoa T et al (2008) Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ Health Perspect 116:898–906

    Article  CAS  Google Scholar 

  • Delfino RJ, Staimer N, Tjoa T et al (2009) Air pollution exposures and circulating biomarkers of effect in a susceptible population: clues to potential causal component mixtures and mechanisms. Environ Health Perspect 117:1232–1238

    Article  CAS  Google Scholar 

  • Dockery DW, Pope CA, Xu X et al (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329:1753–1759

    Article  CAS  Google Scholar 

  • Ebelt ST, Wilson WE, Brauer M (2005) Exposure to ambient and nonambient components of particulate matter. Epidemiology 16:396–405

    Article  Google Scholar 

  • Fann N, Fulcher CM, Hubbell BJ (2009) The influence of location, source, and emission type in estimates of the human health benefits of reducing a ton of air pollution. Air Qual Atmos Health (online June 9, 2009). http://www.springerlink.com/content/1381522137744641/fulltext.html

  • Finkelstein M, Jerrett M, Sears MR (2004) Traffic air pollution and mortality rate advancement periods. Am J Epidemiol 160:173–177

    Article  Google Scholar 

  • Franklin M, Koutrakis P, Schwartz J (2008) The role of particle composition on the association between PM2.5 and mortality. Epidemiology 19:680–689

    Article  Google Scholar 

  • Gold DR, Litonjua AA, Zanobetti A et al (2005) Air pollution and ST-segment depression in elderly subjects. Environ Health Perspect 113:883–887

    Article  CAS  Google Scholar 

  • Grahame TJ (2009) Does improved exposure information for PM2.5 constituents explain differing results among epidemiological studies? Inhal Toxicol 21:381–393

    Article  CAS  Google Scholar 

  • Grahame T, Hidy GM (2007) Pinnacles and pitfalls for source apportionment of potential health effects from airborne particle exposure. Inhal Toxicol 19:727–744

    Article  CAS  Google Scholar 

  • Grahame TJ, Schlesinger RB (2009) Cardiovascular health and particulate vehicular emissions: a critical evaluation of the evidence. Air Qual Atmos Health (online Jun 30, 2009). http://www.springerlink.com/content/67l125671xl33314/fulltext.html

  • Health Effects Institute (2000) The national morbidity, mortality, and air pollution study. Part II: Morbidity and mortality from air pollution in the United States. Research Report #94, Boston, MA

    Google Scholar 

  • Hennekens CH, Buring JE (1987) Epidemiology in medicine. Little, Brown and Co, Boston

    Google Scholar 

  • Hoek G, Brunekreef B, Goldbohm S et al (2002) Association between mortality and indicators of traffic-related air pollution in the Netherlands: a cohort study. Lancet 360:1203–1209

    Article  Google Scholar 

  • Huang Y-CT, Ghio AJ, Stonehuerner J et al (2003) The role of soluble components in ambient fine particles induced changes in human lungs and blood. Inhal Toxicol 15:327–342

    Article  CAS  Google Scholar 

  • Jerrett M, Burnett RT, Ma R et al (2005) Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 16(6):1–10

    Article  Google Scholar 

  • Jerrett M, Newbold KB, Burnett RT et al (2007) Geographies of uncertainty in the health benefits of air quality improvements. Stoch Environ Res Risk Assess 21:511–522

    Article  Google Scholar 

  • Kodavanti UP, Schladweiler MC, Ledbetter AD et al (2005) Consistent pulmonary and systemic responses from inhalation of fine concentrated ambient particles: roles of rat strains used and physicochemical properties. Environ Health Perspect 113(11):1561–1568

    Article  CAS  Google Scholar 

  • Kuenzli N, Jerrett M, Mack WJ et al (2005) Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 113:201–206

    Article  Google Scholar 

  • Laden F, Schwartz J, Speizer FE et al (2006) Reduction in fine particulate air pollution and mortality. Am J Respir Crit Care Med 173:667–672

    Article  CAS  Google Scholar 

  • Lewis CW, Norris G, Conner T et al (2003) Source apportionment of Phoenix PM2.5 aerosol with the Unmix receptor model. J Air Waste Manage Assoc 53:325–338

    Article  CAS  Google Scholar 

  • Li N, Wang M, Oberley TD et al (2002a) Comparison of the pro-oxidative and proinflammatory effects of organic diesel exhaust particle chemicals in bronchial epithelial cells and macrophages. J Epidemiol 169:4531–4541

    CAS  Google Scholar 

  • Li N, Kim S, Wang M et al (2002b) Use of a stratified oxidative stress model to study the biological effects of ambient concentrated and diesel exhaust particulate matter. Inhal Toxicol 14:459–486

    Article  CAS  Google Scholar 

  • Li N, Sioutas C, Cho A et al (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460

    Article  CAS  Google Scholar 

  • Lipfert FW, Wyzga RE, Baty JD et al (2006a) Traffic density as a surrogate measure of environmental exposures in studies of air pollution health effects: Long-term mortality in a cohort of U.S. veterans. Atmos Environ 40:154–169

    Article  CAS  Google Scholar 

  • Lipfert FW, Baty JD, Wyzga RE et al (2006b) PM2.5 constituents and related air quality variables as predictors of survival in a cohort of U.S. military veterans. Inhal Toxicol 18:645–657

    Article  CAS  Google Scholar 

  • Lippmann M, Gordon T, Chen LC (2005) Effects of Subchronic exposures to concentrated ambient particles in mice: IX. Integral assessment and human health implications of subchronic exposures of mice to CAPs. Inhal Toxicol 17:255–261

    Article  CAS  Google Scholar 

  • Lippmann M, Ito K, Hwang J-S et al (2006) Cardiovascular effects of nickel in ambient air. Environ Health Perspect 114:1662–1669

    CAS  Google Scholar 

  • Liu W, Wang Y, Russell A et al (2005) Atmospheric aerosol over two urban–rural pairs in the southeastern United States: chemical composition and possible sources. Atmos Environ 39:4453–4470

    Article  CAS  Google Scholar 

  • Liu W, Wang Y, Russell A et al (2006) Enhanced source identification of Southeast aerosols using temperature resolved carbon fractions and gas phase components. Atmos Environ 40:S445–S466

    Article  CAS  Google Scholar 

  • Maciejczyk P, Chen LC (2005) Effects of subchronic exposures to concentrated ambient particles (CAPs) in mice: VIII. Source related daily variations in in vitro responses to CAPs. Inhal Toxicol 17:243–253

    Article  CAS  Google Scholar 

  • Mar TF, Norris G, Koenig J et al (2000) Associations between air pollution and mortality in Phoenix, 1995–1997. Environ Health Perspect 108:347–353

    Article  CAS  Google Scholar 

  • Mar TF, Ito K, Koenig JQ et al (2006) PM source apportionment and health effects. 3. Investigation of inter-method variations in associations between estimated source contributions of PM2.5 and daily mortality in Phoenix, AZ. J Expos Anal Environ Epidemiol 16(4):311–320

    Article  CAS  Google Scholar 

  • Martineau RJ, Martineau Jr. PD, Novello DP (2005) The Clean Air Act handbook, 2nd edn. American Bar Association, p 27

    Google Scholar 

  • Maynard D, Coull BA, Gryparis A et al (2007) Mortality risk associated with short-term exposure to traffic particles and sulfates. Environ Health Perspect 115:751–755

    Article  CAS  Google Scholar 

  • McDonald JD, Harrod KS, Seagrave J et al (2004) Effects of low sulfur fuel and a catalyzed particle trap on the composition and toxicity of diesel emissions. Environ Health Perspect 112:1307–1312

    Article  CAS  Google Scholar 

  • Metzger KB, Tolbert PE, Klein M et al (2004) Ambient air pollution and cardiovascular emergency department visits. Epidemiology 15:46–56

    Article  Google Scholar 

  • Mills NL, Tornquist H, Robinson SD et al (2005) Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation 112:3930–3936

    Article  CAS  Google Scholar 

  • National Research Council (1998) Research priorities for airborne particulate matter. I: Immediate priorities and a long-range research portfolio. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council (2004) Research priorities for airborne particulate matter. IV: Continuing research progress. National Academy Press, Washington, DC

    Google Scholar 

  • Paatero P (1997) Least-squares formulation of robust nonnegative factor analysis. Chemom Intell Lab Syst 37:23–35

    Article  CAS  Google Scholar 

  • Paatero P, Tapper U (1993) Analysis of different modes of factor analysis as least squares fit problem. Chemom Intell Lab Syst 18:183–194

    Article  CAS  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  • Park SK, O’Neill MS, Stunder BJB et al (2007) Source location of air pollution and cardiac autonomic function: trajectory cluster analysis for exposure assessment. J Expos Sci Environ Epidemiol 17:488–497

    Article  CAS  Google Scholar 

  • Peng RD, Bell ML, Geyh AS et al (2009) Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Perspect 117:957–963

    Article  CAS  Google Scholar 

  • Pope CA, Thun MJ, Namboodiri MM et al (1995) Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. Am J Crit Care Med 151:669–674

    Google Scholar 

  • Pope CA, Burnett RT, Thun MJ et al (2002) Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J Am Med Assoc 287(9):1132–1141

    Article  CAS  Google Scholar 

  • Pope CA III, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 360:376–386

    Article  CAS  Google Scholar 

  • Ramadan Z, Song X-H, Hopke P (2000) Identification of sources of Phoenix aerosol by positive matrix factorization. J Air Waste Manage Assoc 50:1308–1320

    Article  CAS  Google Scholar 

  • Reponen T, Grinshpun S, Trakumas S et al (2003) Concentration gradient patterns of aerosol particles near interstate highways in the Greater Cincinnati airshed. J Environ Monit 5:557–562

    Article  CAS  Google Scholar 

  • Rhoden CR, Wellenius GA, Ghelfi E et al (2005) PM-induced cardiac oxidative stress and dysfunction are mediated by autonomic stimulation. Biochim Biophys Acta 1725:305–313

    Article  CAS  Google Scholar 

  • Salvi S, Blomberg A, Rudell B et al (1999) Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med 159:702–709

    CAS  Google Scholar 

  • Samet JM (2007) Traffic, air pollution, and health. Inhal Toxicol 19:1021–1027

    Article  CAS  Google Scholar 

  • Sarnat JA, Marmur A, Klein M et al (2008) Fine particle sources and cardiorespiratory morbidity: an application of chemical mass balance and factor analytical source-apportionment methods. Environ Health Perspect 116:459–466

    Google Scholar 

  • Schauer JJ (2003) Evaluation of elemental carbon as a marker for diesel particulate matter. J Expos Anal Environ Epidemiol 13:443–453

    Article  CAS  Google Scholar 

  • Schlesinger RB, Cassee F (2003) Atmospheric secondary inorganic particulate matter: the toxicological perspective as a basis for health effects risk assessment. Inhal Toxicol 15:197–235

    Article  CAS  Google Scholar 

  • Schwartz J, Litonjua A, Suh H et al (2005) Traffic related pollution and heart rate variability in a panel of elderly subjects. Thorax 60:455–461

    Article  CAS  Google Scholar 

  • Thurston GD, Spengler JD (1985) A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos Environ 9(1):9–25

    Google Scholar 

  • Tolbert PE, Klein M, Peel JL et al (2007) Multipollutant modeling issues in a study of ambient air quality and emergency department visits in Atlanta. J Expos Sci Environ Epidemiol 17:S29–S35

    Article  CAS  Google Scholar 

  • Van Roosbroeck S, Li R, Hoek G et al (2008) Traffic-related outdoor air pollution and respiratory symptoms in children. Epidemiology 19(3):409–416

    Article  Google Scholar 

  • Zeger SL, Thomas D, Dominici F et al (2000) Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 108:419–426

    Article  CAS  Google Scholar 

  • Zhu Y, Hind WC, Kim S et al (2002a) Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manage Assoc 52:1032–1042

    Article  Google Scholar 

  • Zhu Y, Hinds WC, Kim S et al (2002b) Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ 36:4323–4335

    Article  CAS  Google Scholar 

Download references

Acknowledgment and Disclaimer

The analysis provided in this chapter is the work of the author alone and does not necessarily represent views of the U.S. Department of Energy. Thanks to two anonymous reviewers and especially to JoAnn Yuill for their invaluable assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Grahame .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grahame, T.J. (2010). Distinguishing Health Effects Among Different PM2.5 Components. In: Zereini, F., Wiseman, C. (eds) Urban Airborne Particulate Matter. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12278-1_29

Download citation

Publish with us

Policies and ethics