Biomonitoring of Toxic Compounds of Airborne Particulate Matter in Urban and Industrial Areas

  • Andreas KlumppEmail author
  • Helge Ro-Poulsen
Part of the Environmental Science and Engineering book series (ESE)


The toxicity and ecotoxicity of airborne particulate matter is determined by its physical features, but also by its chemical composition. The standardised exposure of accumulative bioindicator plants is suggested as an efficient and reliable tool to assess and monitor effects of particulate matter on man and environment. Two widely applied biomonitoring procedures, namely the standardised ryegrass exposure for monitoring of trace metals, and the standardised exposure of curly kale for monitoring of PAH compounds, is presented taking examples from a Europe-wide biomonitoring study conducted in 11 European cities. The presented studies proved the suitability of the procedures applied and demonstrated the high relevance of traffic emissions for particle-bound trace metal and PAH pollution in urban areas. Recommendations for the further standardisation of methods and wider application of these methods in environmental monitoring programmes are made.


Airborne Particulate Matter Traffic Site Fodder Plant Trace Metal Accumulation Municipal Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the LIFE Environment Programme of the European Commission, DG Environment, under the grant LIFE/99/ENV/D/000453. We thank the following local and regional authorities and their respective project leaders and co-workers for their valuable support: Landes-hauptstadt Düsseldorf, Umweltamt (H.-W. Hentze, M. Wiese), Communauté urbaine de Lyon, Ecologie urbaine (O. Laurent), Comune di Verona, Servizio Ecologia (T. Basso, N. Belluzzo, S. Oliboni, S. Pisani, R. Tardiani), The City of Edinburgh Council, Air Quality Section (T. Stirling), Sheffield City Council, Environment & Regulatory Services (G. McGrogan, N. Chaplin), Landeshauptstadt Klagenfurt, Abt. Umweltschutz (H.-J. Gutsche), City of Copenhagen, EPA (J. Dahl Madsen), Generalitat de Catalunya, Dept. Medi Ambient, Barcelona (X. Guinart), Communauté Urbaine du Grand Nancy (F. Perrollaz), City of Glyfada (G. Kolovou), and Ayuntamiento de Valencia, Oficina Tècnica de la Devesa-Albufera (A. Vizcaino, A. Quintana) as well as the municipalities of Ditzingen, Plochingen, Deizisau and Altbach (Germany). We thank J. Breuer (State Institute of Agricultural Chemistry, University of Hohenheim) and A. Trenkle (Agricultural Research Institute LTZ Augustenberg, Germany) for performing analyses of antimony concentrations in ryegrass and PAH concentrations in curly kale, respectively. The donation of ryegrass seeds by Nordddeutsche Pflanzenzucht is gratefully acknowledged. Gratitude is also expressed to the staff of all institutions involved in the present studies.


  1. Bofetta P (2006) Human cancer from environmental pollutants: the epidemiological evidence. Mutat Res Genet Toxicol Environ Mutagen 608:157–162CrossRefGoogle Scholar
  2. Caggiano R, Ragosta M, D’Emilio M, Macchiato M (2001) Rye grass species as biomonitors of atmospheric heavy metal emissions. Fresenius Environ Bull 10:31–36Google Scholar
  3. Carreras HA, Pignata ML, Saldiva PHN (2006) In situ monitoring of urban air in Córdoba, Argentina using the Tradescantia-micronucleus (Trad-MCN) bioassay. Atmos Environ 40:7824–7830CrossRefGoogle Scholar
  4. De Temmerman L, Baeten H (1988) The accumulation of airborne fluorides by perennial ryegrass cultures. Fluoride 21:185–192Google Scholar
  5. De Temmerman L, Claeys N, Roekens E, Guns M (2007) Biomonitoring of airborne mercury with perennial ryegrass cultures. Environ Pollut 146:458–462CrossRefGoogle Scholar
  6. Dietl C, Wäber M, Peichl L, Vierle O (1996) Monitoring of airborne metals in grass and depositions. Chemosphere 33:2101–2111CrossRefGoogle Scholar
  7. Dietl C, Reifenhäuser W, Peichl L (1997) Association of antimony with traffic—occurrence in airborne dust, deposition and accumulation in standardized grass cultures. Sci Total Environ 205:235–244CrossRefGoogle Scholar
  8. Domingos M, Klumpp A, Klumpp G (1998) Air pollution impact on the Atlantic forest in the Cubatão region, SP, Brazil. Cienc Cult 50:230–236Google Scholar
  9. EU (2004) Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Official Journal, 26.01.2005, L 23/3-16Google Scholar
  10. Franzaring J, van der Eerden L (2000) Accumulation of airborne persistent organic pollutants (POPs) in plants. Basic Appl Ecol 1:25–30CrossRefGoogle Scholar
  11. Franzaring J, Klumpp A, Fangmeier A (2007) Active biomonitoring of airborne fluoride near an HF producing factory using standardised grass cultures. Atmos Environ 41:4828–4840CrossRefGoogle Scholar
  12. Götschi T, Hazenkamp-von Arx ME, Heinrich J, Bono R, Burney P, Forsberg B, Jarvis D, Maldonado J, Norbäck D, Stern WB, Sunyer J, Torén K, Verlato G, Villani S, Künzli N (2005) Elemental composition and reflectance of ambient fine particles at 21 European locations. Atmos Environ 39:5947–5958CrossRefGoogle Scholar
  13. VDI Verein Deutscher Ingenieure (1978) Messen der Wirkdosis. Verfahren der standardisierten Graskultur. VDI-Richtlinie 3792 Blatt 1Google Scholar
  14. Klumpp A, Klumpp G, Domingos M (1994) Plants as bioindicators of air pollution at the Serra do Mar near the industrial complex of Cubatão, Brazil. Environ Pollut 85:109–116CrossRefGoogle Scholar
  15. Klumpp A, Ansel W, Klumpp G, Belluzzo N, Calatayud V, Chaplin N, Garrec JP, Gutsche H-J, Hayes M, Hentze H-W, Kambezidis H, Laurent O, Peñuelas J, Rasmussen S, Ribas A, Ro-Poulsen H, Rossi S, Sanz MJ, Shang H, Sifakis N, Vergne P (2002) EuroBionet: a Pan-European biomonitoring network for urban air quality assessment. Environ Sci Pollut Res Int 9:199–203CrossRefGoogle Scholar
  16. Klumpp A, Klumpp G, Ansel W (2004) Urban air quality in Europe–results of three years of standardised biomonitoring studies. In: Klumpp A, Ansel W, Klumpp G (eds) Urban air pollution, bioindication and environmental awareness. Cuvillier, Göttingen, pp 25–50Google Scholar
  17. Klumpp A, Ansel W, Klumpp G, Calatayud V, Garrec JP, He S, Peñuelas J, Ribas A, Ro-Poulsen H, Rasmussen S, Sanz MJ, Vergne P (2006a) Tradescantia micronucleus test indicates genotoxic potential of traffic emissions in European cities. Environ Pollut 139:515–522CrossRefGoogle Scholar
  18. Klumpp A, Ansel W, Klumpp G, Vergne P, Sifakis N, Sanz MJ, Rasmussen S, Ro-Poulsen H, Ribas A, Peñuelas J, Kambezidis H, Shang H, Garrec JP, Calatayud V (2006b) Ozone pollution and ozone biomonitoring in European cities Part II. Ozone-induced plant injury and its relationship with descriptors of ozone pollution. Atmos Environ 40:7437–7448CrossRefGoogle Scholar
  19. Klumpp A, Ansel W, Klumpp G, Breuer J, Vergne P, Sanz MJ, Rasmussen S, Ro-Poulsen H, Ribas Artola A, Peñuelas J, He S, Garrec JP, Calatayud V (2009) Airborne trace element pollution in 11 European cities assessed by exposure of standardised ryegrass cultures. Atmos Environ 43:329–339CrossRefGoogle Scholar
  20. Moreno T, Querol X, Alastuey A, Viana M, Salvador P, Sánchez de la Campa A, Artinaño B, de la Rosa J, Gibbons W (2006) Variations in atmospheric PM trace metal content in Spanish towns: illustrating the chemical complexity of the inorganic urban aerosol cocktail. Atmos Environ 40:6791–6803CrossRefGoogle Scholar
  21. Nielsen T (1996) Traffic contribution of polycyclic aromatic hydrocarbons in the center of a large city. Atmos Environ 30:3481–3490CrossRefGoogle Scholar
  22. Nobel W, Maier-Reiter W, Sommer B, Finkbeiner M (1992) Biomonitoring organischer Luftschadstoffe, insbesondere Dioxine/Furane. VDI Ber 901:813–826Google Scholar
  23. Nobel W, Kostka-Rick R, Honnen W, Blum T (2004) Biomonitoring of ambient air pollutants from automobile traffic near a highway. In: Klumpp A, Ansel W, Klumpp G (eds) Urban air pollution, bioindication and environmental awareness. Cuvillier, Göttingen, pp 123–135Google Scholar
  24. Öhlinger R, Döberl H (1992) Immissionskontrollen an standardisierten Pflanzen in Oberösterreich. VDI Ber 901:513–529Google Scholar
  25. Putaud J-P, Raes F, Van Dingenen R, Brüggemann E, Facchini M-C, Decesari S, Fuzzi S, Gehrig R, Hüglin C, Laj P, Lorbeer G, Maenhaut W, Mihalopoulos N, Müller K, Querol X, Rodriguez S, Schneider J, Spindler G, ten Brink H, Tørseth K, Wiedensohler A (2004) A European aerosol phenomenology–2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos Environ 38:2579–2595CrossRefGoogle Scholar
  26. Radermacher L, Krause GHM (2002) Bioindication and air quality control—case studies from Germany. In: Klumpp A, Fomin A, Klumpp G, Ansel W (eds) Bioindication and air quality in European cities—research, application, communication. Heimbach, Ostfildern, pp 95–104Google Scholar
  27. Rey-Asensio A, Carballeira A (2007) Lolium perenne as a biomonitor of atmospheric levels of fluoride. Environ Int 33:583–588CrossRefGoogle Scholar
  28. Schelle E, Rawlins BG, Lark RM, Webster R, Staton I, McLeod CW (2008) Mapping aerial metal deposition in metropolitan areas from tree bark: a case study in Sheffield, England. Environ Pollut 155:164–173CrossRefGoogle Scholar
  29. Stabentheiner E, Gross A, Soja G, Grill D (2004) Air quality assessment in Graz/Austria using monitoring plants. In: Klumpp A, Ansel W, Klumpp G (eds) Urban air pollution, bioindication and environmental awareness. Cuvillier, Göttingen, pp 51–58Google Scholar
  30. Tonneijck AEG, Van Dijk CJ, Dueck TA (2002) Plant monitoring of air quality around waste incinerators. In: Klumpp A, Fomin A, Klumpp G, Ansel W (eds) Bioindication and air quality in European cities—research, application, communication. Heimbach, Ostfildern, pp 67–75Google Scholar
  31. Valavanidis A, Fiotakis K, Vlahogianni T, Bakeas EB, Triantafillaki S, Paraskevopoulou V, Dassenakis M (2006) Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece). Chemosphere 65:760–768CrossRefGoogle Scholar
  32. VDI Verein Deutscher Ingenieure (1999) Biological measuring techniques for the determination and evaluation of effects of air pollutants on plants. Fundamentals and aims. VDI-Guideline 3957 Part 1. Beuth, Düsseldorf, GermanyGoogle Scholar
  33. VDI Verein Deutscher Ingenieure (2003) Biological measuring techniques for the determination and evaluation of effects of air pollutants on plants (bioindication). Method of standardised grass exposure. VDI-Guideline 3957 Part 2. Beuth, Düsseldorf, GermanyGoogle Scholar
  34. VDI Verein Deutscher Ingenieure (2008) Biological measuring procedures to determine and assess effects of air pollutants on plants (bioindication). Procedure for standardised exposure of curly kale. VDI-Guideline 3957 Part 3. Beuth, Düsseldorf, GermanyGoogle Scholar
  35. Wäber M, Köhler J, Peichl L (1996) Polychlorinated biphenyl (PCB) contents in curly kale cultures in the conurbation of Munich, Germany. Organohalog Compd 28:344–349Google Scholar
  36. Wiseman CLS, Zereini F (2009) Airborne particulate matter, platinum group elements and human health: a review of recent evidence. Sci Total Environ 407:2493–2500CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Landscape & Plant Ecology and Life Science CenterUniversity of HohenheimStuttgartGermany
  2. 2.Biological InstituteUniversity of CopenhagenCopenhagen KDenmark

Personalised recommendations