Analysis of Palladium Concentrations in Airborne Particulate Matter with Reductive Co-Precipitation, He Collision Gas and ID-ICP-Q-MS

  • H. AlsenzEmail author
  • F. Zereini
  • C. L. S. Wiseman
  • W. Püttmann
Part of the Environmental Science and Engineering book series (ESE)


The concentration of platinum group elements (PGE) in the environment has increased significantly in the last 20 years mainly due to their use as catalysts in automotive catalytic converters. The quantitation of these metals in different environmental compartments is, however, challenging due to their very low concentrations and the presence of interfering matrix constituents when inductively coupled plasma-mass spectrometry (ICP-MS) is used for analysis. Previously, the research focus was on the analysis of platinum (Pt) and rhodium (Rh). However, due to the increasing use of palladium (Pd) in automotive catalytic converters, quantitation of this element in airborne particulate matter (PM) is also needed. Compared to Pt and Rh, measurements of Pd using ICP-MS are plagued by greater molecular interferences arising from elements such as copper (Cu), zinc (Zn) strontium (Sr), yttrium (Y) and zirconium (Zr). The aim of this study was to evaluate the applicability of reductive co-precipitation procedures using both mercury (Hg) and tellurium (Te) for the pre-concentration of Pd from airborne PM. Furthermore, helium (He) was tested as collision gas for isotope dilution-inductively coupled plasma quadrupole mass spectrometry (ID-ICP-Q-MS) to measure Pd in the Hg and Te precipitates. Airborne PM samples (PM10) were collected from Neuglobsow (Brandenburg, north-eastern Germany) and Deuselbach (Rhineland-Palatinate, south-western Germany), considered to represent background levels, and the city Frankfurt am Main (Hesse, Germany), a high traffic area. Samples were first digested with aqua regia in a high-pressure asher (HPA) at 320 °C and 130 bar prior to the application of reductive co-precipitation procedures. The method was validated with road dust reference material BCR723 and the CANMET CCRMP reference material TDB-1 and WPR-1. In airborne PM collected at the background areas Neuglobsow and Deuselbach, Pd was detected with median concentrations values of 0.5 and 0.6 pg/m3, respectively. Much higher median concentration values of 14.8 pg Pd/m3 (detection limit = 0.01 pg Pd/m3) were detected in samples collected in the city of Frankfurt am Main. Results have show that Hg co-precipitation depletes the concentrations of interfering matrix constituents by at least one order of magnitude more, compared to Te co-precipitation, making it a more effective method for the isolation and pre-enrichment of Pd from airborne PM prior to analysis. The use of a He gas flow of 120 mL/min in the plasma further minimized interferences, particularly those arising from CuAr+, YO+ and ZrO+ during the determination of Pd. The results demonstrate that Hg co-precipitation and the use of He collision gas, in combination with isotope dilution, are highly effective methods for the quantitation of Pd in airborne PM using ICP-MS. This work adapted from Alsenz et al. in Anal Bioanal Chem 395:1919–1927, 2009.


Inductively Couple Plasma Mass Spectrometry Platinum Group Element Catalytic Converter Airborne Particulate Matter Reference Material BCR723 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support of the study by the Umweltbundesamt in Dessau, Germany under grant no. 351-01-049 is gratefully acknowledged. R. Schleyer, E. Bieber and M. Wallasch of the Umweltbundesamt Langen Branch, Air Monitoring Network are thanked for the cooperation and support.


  1. Artelt S, Levsen K, König HP, Rosner G (2000) in Alt F, Zereini F (eds) Anthropogenic platinum-group element emissions and their impact on man and environment. Springer-Verlag, BerlinGoogle Scholar
  2. Bencs L, Ravindra K, Van Grieken G (2006) In: Zereini F, Alt F (eds) Palladium emissions in the environment. Springer Berlin, Heidelberg, New YorkGoogle Scholar
  3. Colombo C, Monhemius AJ, Plant JA (2008a) Sci Total Environ 389:46–51CrossRefGoogle Scholar
  4. Colombo C, Monhemius AJ, Plant JA (2008b) Ecotox Environ Saf 71:722–730CrossRefGoogle Scholar
  5. Domesle R (1996) In Katalysatortechnik. Abschlusspräsentation “Edelmetallemissionen”. GSF; BMBF (eds) Hannover, GermanyGoogle Scholar
  6. Ely JC, Neal CR, Kulpa CF, Schneegurt MA, Seidler JA, Jain JC (2001) Environ Sci Technol 35:3816–3822CrossRefGoogle Scholar
  7. Figueiredo AM, Enzweiler J, Morcelli C, Sarkis J (2006) In: Zereini F, Alt F (eds) Palladium emissions in the environment. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  8. Fritsche J, Meisel T (2004) Sci Total Environ 325:145–154CrossRefGoogle Scholar
  9. Gómez B, Palacios MA, Gómez M, Sanchez JL, Morrison G, Rauch S, McLeod C, Ma R, Caroli S, Alimonti A, Petrucci F, Bocca B, Schramel P, Zischka M, Petterson C, Wass U (2002) Sci Total Environ 299:1–19CrossRefGoogle Scholar
  10. Gómez MB, Gómez MM, Palacios MA (2003) J Anal At Spectrom 18:80–83CrossRefGoogle Scholar
  11. Gómez-Gómez MM, Palacios-Corvillo MA (2006) In: Zereini F, Alt F (eds) Palladium emissions in the environment. Springer Berlin, Heidelberg, New YorkGoogle Scholar
  12. Hann S, Rudolph E, Koellensperger G, Reiter C (2006) In: Zereini F, Alt F (eds) Palladium Emissions in the Environment. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  13. Iavicoli I, Bocca B, Caroli S, Caimi S, Alimonti A, Carelli G, Fontana L (2008) J Occup Environ Med 50:1158–1166CrossRefGoogle Scholar
  14. Jarvis KE, Parry SJ, Piper JM (2001) Environ Sci Technol 35:1031–1036CrossRefGoogle Scholar
  15. Kanitsar K, Koellensperger G, Hann S, Limbeck A, Puxbaum H, Stingeder G (2003) J Anal At Spectrom 18:239–246CrossRefGoogle Scholar
  16. Koppenaal DW, Eiden GC, Barinaga CJ (2004) J Anal At Spectrom 19:561–571CrossRefGoogle Scholar
  17. Limbeck A, Rendl J, Heimburger G, Kranabetter A, Puxbaum H (2004) Atmos Environ 38:1979–1980CrossRefGoogle Scholar
  18. Limbeck A, Puls C, Handler M (2007) Environ Sci Technol 41:4938–4945CrossRefGoogle Scholar
  19. Matthey J (1996) Platinum 1996Google Scholar
  20. Matthey J (2008) Platinum 2008Google Scholar
  21. Meisel T, Moser J (2004) Chem Geol 208:319–338CrossRefGoogle Scholar
  22. Meisel T, Fellner J, Moser J (2003a) J Anal At Spectrom 18:720–726CrossRefGoogle Scholar
  23. Meisel T, Reisberg L, Moser J, Carignan J, Melcher F, Brügmann G (2003b) Chem Geol 201:161–179CrossRefGoogle Scholar
  24. Messerschmidt J, von Bohlen A, Alt F, Klockenkämper R (2000) Analyst 125:397–399CrossRefGoogle Scholar
  25. Moldovan M, Pecheyran C, Donard O (2006) In: Zereini F, Alt F (eds) Palladium emissions in the environment. Springer Berlin, Heidelberg, New YorkGoogle Scholar
  26. Müller M, Heumann KG (2000) Fresenius J Anal Chem 368:109–115CrossRefGoogle Scholar
  27. Niemelä M, Perämaeki P, Kola H, Piispanen J (2003) Anal Chim Acta 493:3–12CrossRefGoogle Scholar
  28. Rauch S, Hemond H, Peucker-Ehrenbrink B, Ek K, Morrison GM (2005) Environ Sci Technol 39:9464–9470CrossRefGoogle Scholar
  29. Ravindra K, Bencs L, Van Grieken R (2004) Sci Tot Environ 318:1–43CrossRefGoogle Scholar
  30. Schlögl R, Indlekofer G, Oelhafen P (1987) Angew Chem 99:312–322CrossRefGoogle Scholar
  31. Schuster M, Schwarzer M, Risse G (1999) In: Zereini F, Alt F (eds) Emissionen von Platinmetallen, Analytik, Umwelt- und Gesundheitsrelevanz. Springer, BerlinGoogle Scholar
  32. Simpson LA, Thomsen M, Alloway BJ, Parker A (2001) J Anal At Spectrom 16:1375–1380CrossRefGoogle Scholar
  33. Sutherland RA (2007) Anal Chimi Acta 582:201–207CrossRefGoogle Scholar
  34. Turner A, Price S (2008) Environ Sci Technol 42:9443–9448CrossRefGoogle Scholar
  35. Vanhaecke F, Resano M, Garcia-Ruiz E, Balcaen L, Koch KR, McIntosh K (2004) J Anal At Spectrom 19:632–638CrossRefGoogle Scholar
  36. Whiteley JD, Murray F (2003) Sci Total Environ 317:121–135CrossRefGoogle Scholar
  37. Wichman H, Anquandah GAK, Schmidt C, Zachmann D, Bahadir MA (2007) Sci Tot Environ 388:121–127CrossRefGoogle Scholar
  38. Wiseman CLS, Zereini F (2009) Sci Total Environ 407:2493–2500CrossRefGoogle Scholar
  39. Abdelnour Y, Murphy J, Varian 820-MS, ICP-MS Application Note Number 28, icpms28.pdf
  40. Zereini F, Skerstupp B, Alt F, Helmers E, Urban H (1997) Sci Tot Environ 206:137–146Google Scholar
  41. Zereini F, Alt F, Messerschmidt J, von Bohlen A, Liebl K, Püttmann W (2004) Environ Sci Technol 38:1686–1692CrossRefGoogle Scholar
  42. Zereini F, Alt F, Messerschmidt J, Wiseman CLS, Feldmann I, von Bohlen A, Müller J, Liebl K, Püttmann W (2005) Environ Sci Technol 39:2983–2989CrossRefGoogle Scholar
  43. Zereini F, Wiseman CLS, Püttmann W (2007) Environ Sci Technol 41:451–456CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • H. Alsenz
    • 1
    Email author
  • F. Zereini
    • 1
  • C. L. S. Wiseman
    • 2
  • W. Püttmann
    • 1
  1. 1.Department of Environmental Analytical Chemistry, Institute for Atmospheric and Environmental SciencesJ.W. Goethe-UniversityFrankfurt/MainGermany
  2. 2.Centre for Environment, University of TorontoTorontoCanada

Personalised recommendations