Omega-3 Fatty Acids and Skin



Using nutrients such as omega-3 polyunsaturated fatty acids (n-3 PUFAs) for the promotion of skin health and treatment of skin disorders is a novel concept. These bioactive fatty acids have a high safety profile and could potentially be used as an adjuvant or alternative to traditional therapy. Evidence exists to suggest that n-3 PUFA exert their protective effects in biological tissues via a range of mechanisms, from alteration of receptor mediated signaling at cellular membranes to eicosanoid signaling and transcriptional activation. A more detailed examination of the activities of n-3 PUFA in the skin is required to enable dissection of the molecular actions of these fats. This could lead to the development of targeted natural treatments in addition to enhancing our understanding of how diet impacts upon skin function.


Arachidonic Acid Atopic Dermatitis PUFA Supplementation PUFA Ratio Eicosatetraenoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Burr, G.O., Burr, M.M.: A new deficiency disease produced by the rigid exclusion of fat from the diet. J. Biol. Chem. 82, 345–367 (1929)Google Scholar
  2. 2.
    Simopoulos, A.P.: Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54, 438–463 (1991)PubMedGoogle Scholar
  3. 3.
    Simopoulos, A.P.: The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 233, 674–688 (2008)Google Scholar
  4. 4.
    Jacobson, T.A.: Role of n-3 fatty acids in the treatment of hypertriglyceridemia and cardiovascular disease. Am. J. Clin. Nutr. 87, 1981S–1990S (2008)PubMedGoogle Scholar
  5. 5.
    De Caterina, R., Liao, J.K., Libby, P.: Fatty acid modulation of endothelial activation. Am. J. Clin. Nutr. 71, 213S–223S (2000)PubMedGoogle Scholar
  6. 6.
    Rhodes, L.E., Durham, B.H., Fraser, W.D., et al.: Dietary fish oil reduces basal and ultraviolet B-generated PGE2 levels in skin and increases the threshold to provocation of polymorphic light eruption. J. Invest. Dermatol. 105, 532–535 (1995)PubMedGoogle Scholar
  7. 7.
    Allen, B.R.: Fish oil in combination with other therapies in the treatment of psoriasis. World Rev. Nutr. Diet. 66, 436–445 (1991)PubMedGoogle Scholar
  8. 8.
    Orengo, I.F., Black, H.S., Kettler, A.H., et al.: Influence of dietary menhaden oil upon carcinogenesis and various cutaneous responses to ultraviolet radiation. Photochem. Photobiol. 49, 71–77 (1989)PubMedGoogle Scholar
  9. 9.
    Rhodes, L.E., Shahbakhti, H., Azurdia, R.M., et al.: Effect of eicosapentaenoic acid, an omega-3 polyunsaturated fatty acid, on UVR-related cancer risk in humans. An assessment of early genotoxic markers. Carcinogenesis 24, 919–925 (2003)PubMedGoogle Scholar
  10. 10.
    Black, H.S., Rhodes, L.E.: The potential of omega-3 fatty acids in the prevention of non-melanoma skin cancer. Cancer Detect. Prev. 30, 224–232 (2006)PubMedGoogle Scholar
  11. 11.
    Simopoulos, A.: Omega 3 fatty acids in wild plants, nuts and seeds. Asia Pac. J. Clin. Nutr. 11, S163–S173 (2002)Google Scholar
  12. 12.
    Pawlosky, R.J., Hibbeln, J.R., Novotny, J.A., et al.: Physiological compartmental analysis of {alpha}-linolenic acid metabolism in adult humans. J. Lipid Res. 42, 1257–1265 (2001)PubMedGoogle Scholar
  13. 13.
    Chapkin, R.S., Ziboh, V.A., Marcelo, C.L., et al.: Metabolism of essential fatty acids by human epidermal enzyme preparations- evidence of chain elongation. J. Lipid Res. 27, 945–954 (1986)PubMedGoogle Scholar
  14. 14.
    Guil-Guerrero, L.J.: Stearidonic acid (18:4n-3): metabolism, nutritional importance, medical uses and natural sources. Eur. J. Lipid Sci. Technol. 109, 1226–1236 (2007)Google Scholar
  15. 15.
    Whelan, J., Rust, C.: Innovative dietary sources of n-3 fatty acids. Annu. Rev. Nutr. 26, 75–103 (2006)PubMedGoogle Scholar
  16. 16.
    Ursin, V.M.: Modification of plant lipids for human health: development of functional land-based omega-3 fatty acids. J. Nutr. 133, 4271–4274 (2003)PubMedGoogle Scholar
  17. 17.
    De Angelis, L., Rise, P., Giavarini, F., et al.: Marine macroalgae analyzed by mass spectrometry are rich sources of polyunsaturated fatty acids. J. Mass Spectrom. 40, 1605–1608 (2005)PubMedGoogle Scholar
  18. 18.
    James, M.J., Ursin, V.M., Cleland, L.G.: Metabolism of stearidonic acid in human subjects: comparison with the metabolism of other n-3 fatty acids. Am. J. Clin. Nutr. 77, 1140–1145 (2003)PubMedGoogle Scholar
  19. 19.
    Miles, E.A., Banerjee, T., Calder, P.C.: The influence of different combinations of gamma-linolenic, stearidonic and eicosapentaenoic acids on the fatty acid composition of blood lipids and mononuclear cells in human volunteers. Prostaglandins Leukot. Essent. Fatty Acids 70, 529–538 (2004)PubMedGoogle Scholar
  20. 20.
    Verger, P., Khalfi, N., Roy, C., et al.: Balancing the risk of dioxins and polychlorinated biphenyls (PCBs) and the benefit of long-chain polyunsaturated fatty acids of the n-3 variety for French fish consumers in western coastal areas. Food Additives Contaminants: Part A 25, 765–771 (2008)Google Scholar
  21. 21.
    Storelli, M.M.: Potential human health risks from metals (Hg, Cd, and Pb) and polychlorinated biphenyls (PCBs) via seafood consumption: estimation of target hazard quotients (THQs) and toxic equivalents (TEQs). Food Chem. Toxicol. 46, 2782–2788 (2008)PubMedGoogle Scholar
  22. 22.
    Marriott, H., Buttriss, J.: Key points from the National Diet and Nutrition Survey of adults aged 19-64. Nutr. Bull. 28, 355–363 (2002)Google Scholar
  23. 23.
    Gale, M.M., Crawford, M.A., Woodford, M.H.: The fatty acid composition of adipose and muscle tissue in domestic and free-living ruminants. Biochem. J. 113, 6P (1969)PubMedGoogle Scholar
  24. 24.
    van Vliet, T., Katan, M.B.: Lower ratio of n-3 to n-6 fatty acids in cultured than in wild fish. Am. J. Clin. Nutr. 51, 1–2 (1990)PubMedGoogle Scholar
  25. 25.
    Lichtenstein, A.H., Appel, L.J., Brands, M., et al.: Diet and lifestyle recommendations revision 2006: a scientific statement from the american heart association nutrition committee. Circulation 114, 82–96 (2006)PubMedGoogle Scholar
  26. 26.
    ISSFAL. Recommendations for Dietary Intake of Polyunsaturated Fatty Acids in Healthy Adults. 2004.Google Scholar
  27. 27.
    UK Scientific Advisory Committee on Nutrition. Accessed 17 April 2006
  28. 28.
    WHO/FAO: Expert consultation. Diet, nutrition, and the prevention of chronic diseases. World Health Organ. Tech. Rep. Ser. 916, 89–90 (2003)Google Scholar
  29. 29.
    IOM: Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. National Academies Press, Washington DC (2002)Google Scholar
  30. 30.
    Cardiovascular Review Group, Committee on Medical Aspects of Food Policy, Nutritional aspects of cardiovascular disease. Report on Health and Social Subjects. London, Department of Health, 1994Google Scholar
  31. 31.
    Sinclair, A.J., Attar-Bashi, N.M., Li, D.: What is the role of alpha-linolenic acid for mammals? Lipids 37, 1113–1123 (2002)PubMedGoogle Scholar
  32. 32.
    Rhodes, L.E., O’Farrell, S., Jackson, M.J., et al.: Dietary fish-oil supplementation in humans reduces UVB-erythemal sensitivity but increases epidermal lipid peroxidation. J. Invest. Dermatol. 103, 151–154 (1994)PubMedGoogle Scholar
  33. 33.
    O’Farrell, S.: Dietary polyunsaturated fatty acids and oxidation damage to heart, skeletal muscle and skin. PhD thesis, University of Liverpool (1994)Google Scholar
  34. 34.
    Elias, P.M., Brown, B.E., Ziboh, V.A.: The permeability barrier in essential fatty acid deficiency: evidence for a direct role for linoleic acid in barrier function. J. Invest. Dermatol. 74, 230–233 (1980)PubMedGoogle Scholar
  35. 35.
    Schurer, N.Y., Stremmel, W., Grundmann, J.U., et al.: Evidence for a novel keratinocyte fatty acid uptake mechanism with preference for linoleic acid: comparison of oleic and linoleic acid uptake by cultured human keratinocytes, fibroblasts and a human hepatoma cell line. Biochim. Biophys. Acta 1211, 51–60 (1994)PubMedGoogle Scholar
  36. 36.
    Schmuth, M., Ortegon, A.M., Mao-Qiang, M., et al.: Differential expression of fatty acid transport proteins in epidermis and skin appendages. J. Invest. Dermatol. 125, 1174–1181 (2005)PubMedGoogle Scholar
  37. 37.
    Jia, Z., Moulson, C.L., Pei, Z., et al.: Fatty acid transport protein 4 is the principal very long chain fatty acyl-CoA synthetase in skin fibroblasts. J. Biol. Chem. 282, 20573–20583 (2007)PubMedGoogle Scholar
  38. 38.
    Madsen, P., Rasmussen, H.H., Leffers, H., et al.: Molecular cloning and expression of a novel keratinocyte protein (psoriasis-associated fatty acid-binding protein [PA-FABP]) that is highly up-regulated in psoriatic skin and that shares similarity to fatty acid-binding proteins. J. Invest. Dermatol. 99, 299–305 (1992)PubMedGoogle Scholar
  39. 39.
    Hotamisligil, G.S., Johnson, R.S., Distel, R.J., et al.: Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274, 1377–1379 (1996)PubMedGoogle Scholar
  40. 40.
    Owada, Y., Abdelwahab, S.A., Suzuki, R., et al.: Localization of epidermal-type fatty acid binding protein in alveolar macrophages and some alveolar type II epithelial cells in mouse lung. Histochem. J. 33, 453–457 (2001)PubMedGoogle Scholar
  41. 41.
    Nakamura, M.T., Nara, T.Y.: Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 24, 345–376 (2004)PubMedGoogle Scholar
  42. 42.
    Ziboh, V.A., Miller, C.C.: Essential fatty acids and polyunsaturated fatty acids: significance in cutaneous biology. Annu. Rev. Nutr. 10, 433–450 (1990)PubMedGoogle Scholar
  43. 43.
    Nugteren, D.H., Christ-Hazelhof, E., van der Beek, A., et al.: Metabolism of linoleic acid and other essential fatty acids in the epidermis of the rat. Biochim. Biophys. Acta 834, 429–436 (1985)PubMedGoogle Scholar
  44. 44.
    Ziboh, V.A., Miller, C.C., Cho, Y.: Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites1. Am. J. Clin. Nutr. 71, 361S–366S (2000)PubMedGoogle Scholar
  45. 45.
    Ziboh, V.A.: Essential fatty acids/eicosanoid biosynthesis in the skin: biological significance. Proc. Soc. Exp. Biol. Med. 205, 1–11 (1994)PubMedGoogle Scholar
  46. 46.
    Lee, J.L., Mukhtar, H., Bickers, D.R., et al.: Cyclooxygenases in the skin: pharmacological and toxicological implications. Toxicol. Appl. Pharmacol. 192, 294–306 (2003)PubMedGoogle Scholar
  47. 47.
    Balsinde, J., Winstead, M.V., Dennis, E.A.: Phospholipase A(2) regulation of arachidonic acid mobilization. FEBS Lett. 531, 2–6 (2002)PubMedGoogle Scholar
  48. 48.
    Lands, W.E.: Biochemistry and physiology of n-3 fatty acids. FASEB J. 6, 2530–2536 (1992)PubMedGoogle Scholar
  49. 49.
    Miller, C.C., Tang, W., Ziboh, V.A., et al.: Dietary supplementation with ethyl ester concentrates of fish oil (n-3) and borage oil (n-6) polyunsaturated fatty acids induces epidermal generation of local putative anti-inflammatory metabolites. J. Invest. Dermatol. 96, 98–103 (1991)PubMedGoogle Scholar
  50. 50.
    Fer, M., Corcos, L., Dreano, Y., et al.: Cytochromes P450 from family 4 are the main omega hydroxylating enzymes in humans: CYP4F3B is the prominent player in PUFA metabolism. J. Lipid Res. 49, 2379–2389 (2008)PubMedGoogle Scholar
  51. 51.
    London, E.: Insights into lipid raft structure and formation from experiments in model membranes. Curr. Opin. Struct. Biol. 12, 480–486 (2002)PubMedGoogle Scholar
  52. 52.
    Zeyda, M., Staffler, G., Horejsi, V., et al.: LAT displacement from lipid rafts as a molecular mechanism for the inhibition of T cell signaling by polyunsaturated fatty acids. J. Biol. Chem. 277, 28418–28423 (2002)PubMedGoogle Scholar
  53. 53.
    Stulnig, T.M., Huber, J., Leitinger, N., et al.: Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. J. Biol. Chem. 276, 37335–37340 (2001)PubMedGoogle Scholar
  54. 54.
    Webb, Y., Hermida-Matsumoto, L., Resh, M.D.: Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J. Biol. Chem. 275, 261–270 (2000)PubMedGoogle Scholar
  55. 55.
    Prior, I.A., Harding, A., Yan, J., et al.: GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat. Cell Biol. 3, 368–375 (2001)PubMedGoogle Scholar
  56. 56.
    Ma, D.W., Seo, J., Davidson, L.A., et al.: n-3 PUFA alter caveolae lipid composition and resident protein localization in mouse colon. FASEB J. 18, 1040–1042 (2004)PubMedGoogle Scholar
  57. 57.
    May, C.L., Southworth, A.J., Calder, P.C.: Inhibition of lymphocyte protein kinase C by unsaturated fatty acids. Biochem. Biophys. Res. Commun. 195, 823–828 (1993)PubMedGoogle Scholar
  58. 58.
    Denys, A., Hichami, A., Khan, N.A.: n-3 PUFAs modulate T-cell activation via protein kinase C-alpha and -epsilon and the NF-kappaB signaling pathway. J. Lipid Res. 46, 752–758 (2005)PubMedGoogle Scholar
  59. 59.
    Denys, A., Hichami, A., Khan, N.A.: Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase (ERK1/ERK2) signaling in human T cells. J. Lipid Res. 42, 2015–2020 (2001)PubMedGoogle Scholar
  60. 60.
    Sperling, R.I., Robin, J.L., Kylander, K.A., et al.: The effects of N-3 polyunsaturated fatty acids on the generation of platelet-activating factor-acether by human monocytes. J. Immunol. 139, 4186–4191 (1987)PubMedGoogle Scholar
  61. 61.
    Hamid, R., Singh, J., Reddy, B.S., et al.: Inhibition by dietary menhaden oil of cyclooxygenase-1 and -2 in N-nitrosomethylurea-induced rat mammary tumors. Int. J. Oncol. 14, 523–528 (1999)PubMedGoogle Scholar
  62. 62.
    Singh, J., Hamid, R., Reddy, B.S.: Dietary fat and colon cancer: modulation of cyclooxygenase-2 by types and amount of dietary fat during the postinitiation stage of colon carcinogenesis. Cancer Res. 57, 3465–3470 (1997)PubMedGoogle Scholar
  63. 63.
    Form, D.M., Auerbach, R.: PGE2 and angiogenesis. Proc. Soc. Exp. Biol. Med. 172, 214–218 (1983)PubMedGoogle Scholar
  64. 64.
    Boudreau, M.D., Sohn, K.H., Rhee, S.H., et al.: Suppression of tumor cell growth both in nude mice and in culture by n-3 polyunsaturated fatty acids: mediation through cyclooxygenase-independent pathways. Cancer Res. 61, 1386–1391 (2001)PubMedGoogle Scholar
  65. 65.
    Badawi, A.F., Archer, M.C.: Effect of hormonal status on the expression of the cyclooxygenase 1 and 2 genes and prostaglandin synthesis in rat mammary glands. Prostaglandins Other Lipid Mediat. 56, 167–181 (1998)PubMedGoogle Scholar
  66. 66.
    Collett, E.D., Davidson, L.A., Fan, Y.Y., et al.: n-6 and n-3 polyunsaturated fatty acids differentially modulate oncogenic Ras activation in colonocytes. Am. J. Physiol. Cell Physiol. 280, C1066–C1075 (2001)PubMedGoogle Scholar
  67. 67.
    Chiu, L.C., Wan, J.M.: Induction of apoptosis in HL-60 cells by eicosapentaenoic acid (EPA) is associated with downregulation of bcl-2 expression. Cancer Lett. 145, 17–27 (1999)PubMedGoogle Scholar
  68. 68.
    Liu, G., Bibus, D.M., Bode, A.M., et al.: Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells. Proc. Natl Acad. Sci. USA 98, 7510–7515 (2001)PubMedGoogle Scholar
  69. 69.
    Hardman, W.E.: Omega-3 fatty acids to augment cancer therapy. J. Nutr. 132, 3508S–3512S (2002)PubMedGoogle Scholar
  70. 70.
    Novak, T.E., Babcock, T.A., Jho, D.H., et al.: NF-kappa B inhibition by omega -3 fatty acids modulates LPS-stimulated macrophage TNF-alpha transcription. Am. J. Physiol. Lung Cell. Mol. Physiol. 284, L84–L89 (2003)PubMedGoogle Scholar
  71. 71.
    Camandola, S., Leonarduzzi, G., Musso, T., et al.: Nuclear factor kB is activated by arachidonic acid but not by eicosapentaenoic acid. Biochem. Biophys. Res. Commun. 229, 643–647 (1996)PubMedGoogle Scholar
  72. 72.
    Zhao, Y., Joshi-Barve, S., Barve, S., et al.: Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation. J. Am. Coll. Nutr. 23, 71–78 (2004)PubMedGoogle Scholar
  73. 73.
    Westergaard, M., Henningsen, J., Svendsen, M.L., et al.: Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid. J. Invest. Dermatol. 116, 702–712 (2001)PubMedGoogle Scholar
  74. 74.
    Matsuura, H., Adachi, H., Smart, R.C., et al.: Correlation between expression of peroxisome proliferator-activated receptor beta and squamous differentiation in epidermal and tracheobronchial epithelial cells. Mol. Cell. Endocrinol. 147, 85–92 (1999)PubMedGoogle Scholar
  75. 75.
    Mao-Qiang, M., Fowler, A.J., Schmuth, M., et al.: Peroxisome-proliferator-activated receptor (PPAR)-gamma activation stimulates keratinocyte differentiation. J. Invest. Dermatol. 123, 305–312 (2004)PubMedGoogle Scholar
  76. 76.
    Schmuth, M., Haqq, C.M., Cairns, W.J., et al.: Peroxisome proliferator-activated receptor (PPAR)-beta/delta stimulates differentiation and lipid accumulation in keratinocytes. J. Invest. Dermatol. 122, 971–983 (2004)PubMedGoogle Scholar
  77. 77.
    Forman, B.M., Tontonoz, P., Chen, J., et al.: 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell 83, 803–812 (1995)PubMedGoogle Scholar
  78. 78.
    Yu, K., Bayona, W., Kallen, C.B., et al.: Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J. Biol. Chem. 270, 23975–23983 (1995)PubMedGoogle Scholar
  79. 79.
    Kliewer, S.A., Sundseth, S.S., Jones, S.A., et al.: Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc. Natl. Acad. Sci. USA 94, 4318–4323 (1997)PubMedGoogle Scholar
  80. 80.
    Meade, E.A., McIntyre, T.M., Zimmerman, G.A., et al.: Peroxisome proliferators enhance cyclooxygenase-2 expression in epithelial cells. J. Biol. Chem. 274, 8328–8334 (1999)PubMedGoogle Scholar
  81. 81.
    Chêne, G., Dubourdeau, M., Balard, P., et al.: n-3 and n-6 Polyunsaturated fatty acids induce the expression of COX-2 via PPAR[gamma] activation in human keratinocyte HaCaT cells. Biochim. Biophys. Acta (BBA) – Mol. Cell Biol. Lipids 1771, 576–589 (2007)Google Scholar
  82. 82.
    Lee, T.H., Hoover, R.L., Williams, J.D., et al.: Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N. Engl. J. Med. 312, 1217–1224 (1985)PubMedGoogle Scholar
  83. 83.
    Bagga, D., Wang, L., Farias-Eisner, R., et al.: Differential effects of prostaglandin derived from omega -6 and omega -3 polyunsaturated fatty acids on COX-2 expression and IL-6 secretion. Proc. Natl. Acad. Sci. USA 100, 1751–1756 (2003)PubMedGoogle Scholar
  84. 84.
    Goldman, D.W., Pickett, W.C., Goetzl, E.J.: Human neutrophil chemotactic and degranulating activities of leukotriene B5 (LTB5) derived from eicosapentaenoic acid. Biochem. Biophys. Res. Commun. 117, 282–288 (1983)PubMedGoogle Scholar
  85. 85.
    Powell, W.S., Gravel, S., Gravelle, F.: Formation of a 5-oxo metabolite of 5, 8, 11, 14, 17-eicosapentaenoic acid and its effects on human neutrophils and eosinophils. J. Lipid Res. 36, 2590–2598 (1995)PubMedGoogle Scholar
  86. 86.
    Thies, F., Miles, E.A., Nebe-von-Caron, G., et al.: Influence of dietary supplementation with long-chain n-3 or n-6 polyunsaturated fatty acids on blood inflammatory cell populations and functions and on plasma soluble adhesion molecules in healthy adults. Lipids 36, 1183–1193 (2001)PubMedGoogle Scholar
  87. 87.
    Mayer, K., Meyer, S., Reinholz-Muhly, M., et al.: Short-Time Infusion of Fish Oil-Based Lipid Emulsions, Approved for Parenteral Nutrition, Reduces Monocyte Proinflammatory Cytokine Generation and Adhesive Interaction with Endothelium in Humans. J. Immunol. 171, 4837–4843 (2003)PubMedGoogle Scholar
  88. 88.
    Endres, S., Ghorbani, R., Kelley, V.E., et al.: The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. N. Engl. J. Med. 320, 265–271 (1989)PubMedGoogle Scholar
  89. 89.
    Caughey, G.E., Mantzioris, E., Gibson, R.A., et al.: The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am. J. Clin. Nutr. 63, 116–122 (1996)PubMedGoogle Scholar
  90. 90.
    Trebble, T., Arden, N.K., Stroud, M.A., et al.: Inhibition of tumour necrosis factor-alpha and interleukin 6 production by mononuclear cells following dietary fish-oil supplementation in healthy men and response to antioxidant co-supplementation. Br. J. Nutr. 90, 405–412 (2003)PubMedGoogle Scholar
  91. 91.
    Meydani, S.N., Endres, S., Woods, M.M., et al.: Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. J. Nutr. 121, 547–555 (1991)PubMedGoogle Scholar
  92. 92.
    Wallace, F.A., Miles, E.A., Calder, P.C.: Comparison of the effects of linseed oil and different doses of fish oil on mononuclear cell function in healthy human subjects. Br. J. Nutr. 89, 679–689 (2003)PubMedGoogle Scholar
  93. 93.
    Storey, A., McArdle, F., Friedmann, P.S., et al.: Eicosapentaenoic acid and docosahexaenoic acid reduce UVB- and TNF-alpha-induced IL-8 secretion in keratinocytes and UVB-induced IL-8 in fibroblasts. J. Invest. Dermatol. 124, 248–255 (2005)PubMedGoogle Scholar
  94. 94.
    Pupe, A., Moison, R., De Haes, P., et al.: Eicosapentaenoic acid, a n-3 polyunsaturated fatty acid differentially modulates TNF-alpha, IL-1alpha, IL-6 and PGE2 expression in UVB-irradiated human keratinocytes. J. Invest. Dermatol. 118, 692–698 (2002)PubMedGoogle Scholar
  95. 95.
    Shahbakhti, H., Watson, R.E., Azurdia, R.M., et al.: Influence of eicosapentaenoic acid, an omega-3 fatty acid, on ultraviolet-B generation of prostaglandin-E2 and proinflammatory cytokines interleukin-1 beta, tumor necrosis factor-alpha, interleukin-6 and interleukin-8 in human skin in vivo. Photochem. Photobiol. 80, 231–235 (2004)PubMedGoogle Scholar
  96. 96.
    Serhan, C.N., Hong, S., Gronert, K., et al.: Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196, 1025–1037 (2002)PubMedGoogle Scholar
  97. 97.
    Serhan, C.N., Clish, C.B., Brannon, J., et al.: Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J. Exp. Med. 192, 1197–1204 (2000)PubMedGoogle Scholar
  98. 98.
    Hong, S., Gronert, K., Devchand, P.R., et al.: Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J. Biol. Chem. 278, 14677–14687 (2003)PubMedGoogle Scholar
  99. 99.
    Serhan, C.N.: Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot. Essent. Fatty Acids 73, 141–162 (2005)PubMedGoogle Scholar
  100. 100.
    Marcheselli, V.L., Hong, S., Lukiw, W.J., et al.: Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol. Chem. 278, 43807–43817 (2003)PubMedGoogle Scholar
  101. 101.
    Mukherjee, P.K., Marcheselli, V.L., Serhan, C.N., et al.: Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl. Acad. Sci. USA 101, 8491–8496 (2004)PubMedGoogle Scholar
  102. 102.
    Hughes, D.A., Pinder, A.C.: N-3 polyunsaturated fatty acids modulate the expression of functionally associated molecules on human monocytes and inhibit antigen-presentation in vitro. Clin. Exp. Immunol. 110, 516–523 (1997)PubMedGoogle Scholar
  103. 103.
    Calder, P.C.: Effects of fatty acids and dietary lipids on cells of the immune system. Proc. Nutr. Soc. 55, 127–150 (1996)PubMedGoogle Scholar
  104. 104.
    Hughes, D.A., Pinder, A.C.: n-3 polyunsaturated fatty acids inhibit the antigen-presenting function of human monocytes. Am. J. Clin. Nutr. 71, 357S–360S (2000)PubMedGoogle Scholar
  105. 105.
    Calder, P.C., Yaqoob, P., Thies, F., et al.: Fatty acids and lymphocyte functions. Br. J. Nutr. 87(Suppl 1), S31–S48 (2002)PubMedGoogle Scholar
  106. 106.
    Arrington, J.L., McMurray, D.N., Switzer, K.C., et al.: Docosahexaenoic acid suppresses function of the CD28 costimulatory membrane receptor in primary murine and Jurkat T cells. J. Nutr. 131, 1147–1153 (2001)PubMedGoogle Scholar
  107. 107.
    Calder, P.C., Grimble, R.F.: Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 56(Suppl 3), S14–S19 (2002)PubMedGoogle Scholar
  108. 108.
    Gibney, M.J., Hunter, B.: The effects of short- and long-term supplementation with fish oil on the incorporation of n-3 polyunsaturated fatty acids into cells of the immune system in healthy volunteers. Eur. J. Clin. Nutr. 47, 255–259 (1993)PubMedGoogle Scholar
  109. 109.
    Black, H.S., Thornby, J.I., Gerguis, J., et al.: Influence of dietary omega-6, -3 fatty acid sources on the initiation and promotion stages of photocarcinogenesis. Photochem. Photobiol. 56, 195–199 (1992)PubMedGoogle Scholar
  110. 110.
    Strickland, P.T., Creasia, D., Kripke, M.L.: Enhancement of two-stage skin carcinogenesis by exposure of distant skin to UV radiation. J. Natl Cancer Inst. 74, 1129–1134 (1985)PubMedGoogle Scholar
  111. 111.
    Moison, R.M., Beijersbergen Van Henegouwen, G.M.: Dietary eicosapentaenoic acid prevents systemic immunosuppression in mice induced by UVB radiation. Radiat. Res. 156, 36–44 (2001)PubMedGoogle Scholar
  112. 112.
    Moison, R.M., Steenvoorden, D.P., Beijersbergen van Henegouwen, G.M.: Topically applied eicosapentaenoic acid protects against local immunosuppression induced by UVB irradiation, cis-urocanic acid and thymidine dinucleotides. Photochem. Photobiol. 73, 64–70 (2001)PubMedGoogle Scholar
  113. 113.
    Chung, H.T., Burnham, D.K., Robertson, B., et al.: Involvement of prostaglandins in the immune alterations caused by the exposure of mice to ultraviolet radiation. J. Immunol. 137, 2478–2484 (1986)PubMedGoogle Scholar
  114. 114.
    Tsuzuki, T., Igarashi, M., Miyazawa, T.: Conjugated Eicosapentaenoic Acid (EPA) Inhibits Transplanted Tumor Growth via Membrane Lipid Peroxidation in Nude Mice. J. Nutr. 134, 1162–1166 (2004)PubMedGoogle Scholar
  115. 115.
    van den Berg, J.J., de Fouw, N.J., Kuypers, F.A., et al.: Increased n-3 polyunsaturated fatty acid content of red blood cells from fish oil-fed rabbits increases in vitro lipid peroxidation, but decreases hemolysis. Free Radic. Biol. Med. 11, 393–399 (1991)PubMedGoogle Scholar
  116. 116.
    Morrow, J.D., Roberts, L.J.: The isoprostanes: unique bioactive products of lipid peroxidation. Prog. Lipid Res. 36, 1–21 (1997)PubMedGoogle Scholar
  117. 117.
    Morrow, J.D., Hill, K.E., Burk, R.F., et al.: A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. USA 87, 9383–9387 (1990)PubMedGoogle Scholar
  118. 118.
    Davis, T.A., Gao, L., Yin, H., et al.: In vivo and in vitro lipid peroxidation of arachidonate esters: the effect of fish oil and n-3 lipids on product distribution. J. Am. Chem. Soc. 128, 14897–14904 (2006)PubMedGoogle Scholar
  119. 119.
    Manna, S., Chakraborty, T., Ghosh, B., et al.: Dietary fish oil associated with increased apoptosis and modulated expression of Bax and Bcl-2 during 7,12-dimethylbenz([alpha])anthracene-induced mammary carcinogenesis in rats. Prostaglandins Leukot and Essent Fatty Acids 79, 5–14 (2008)Google Scholar
  120. 120.
    Chiu, L.C., Wan, J.M.: Induction of apoptosis in HL-60 cells by eicosapentaenoic acid (EPA) is associated with downregulation of bcl-2 expression. Cancer Lett. 145, 17–27 (1999)PubMedGoogle Scholar
  121. 121.
    Schley, P.D., Jijon, H.B., Robinson, L.E., et al.: Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res. Treat. 92, 187–195 (2005)PubMedGoogle Scholar
  122. 122.
    Shirota, T., Haji, S., Yamasaki, M., et al.: Apoptosis in human pancreatic cancer cells induced by eicosapentaenoic acid. Nutrition 21, 1010–1017 (2005)PubMedGoogle Scholar
  123. 123.
    Artwohl, M., Roden, M., Waldhausl, W., et al.: Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB J. 18, 146–148 (2004)PubMedGoogle Scholar
  124. 124.
    Kim, H.J., Vosseler, C.A., Weber, P.C., et al.: Docosahexaenoic acid induces apoptosis in proliferating human endothelial cells. J. Cell. Physiol. 204, 881–888 (2005)PubMedGoogle Scholar
  125. 125.
    Albino, A.P., Juan, G., Traganos, F., et al.: Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid: association with decreased pRb phosphorylation. Cancer Res. 60, 4139–4145 (2000)PubMedGoogle Scholar
  126. 126.
    Girotti, A.W.: Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39, 1529–1542 (1998)PubMedGoogle Scholar
  127. 127.
    Galeotti, T., Borrello, S., Minotti, G., et al.: Membrane alterations in cancer cells: the role of oxy radicals. Ann. N. Y. Acad. Sci. 488, 468–480 (1986)PubMedGoogle Scholar
  128. 128.
    Latham, P., Lund, E.K., Brown, J.C., et al.: Effects of cellular redox balance on induction of apoptosis by eicosapentaenoic acid in HT29 colorectal adenocarcinoma cells and rat colon in vivo. Gut 49, 97–105 (2001)PubMedGoogle Scholar
  129. 129.
    Begin, M.E., Ells, G., Horrobin, D.F.: Polyunsaturated fatty acid-induced cytotoxicity against tumor cells and its relationship to lipid peroxidation. J. Natl. Cancer Inst. 80, 188–194 (1988)PubMedGoogle Scholar
  130. 130.
    Colquhoun, A., Schumacher, R.I.: Gamma-linolenic acid and eicosapentaenoic acid induce modifications in mitochondrial metabolism, reactive oxygen species generation, lipid peroxidation and apoptosis in Walker 256 rat carcinosarcoma cells. Biochim. Biophys. Acta 1533, 207–219 (2001)PubMedGoogle Scholar
  131. 131.
    Rhodes, L.E., Belgi, G., Parslew, R., et al.: Ultraviolet-B-induced erythema is mediated by nitric oxide and prostaglandin E2 in combination. J. Invest. Dermatol. 117, 880–885 (2001)PubMedGoogle Scholar
  132. 132.
    Orengo, I.F., Black, H.S., Wolf, J.E.: Influence of fish oil supplementation on the minimal erythema dose in humans. Arch. Dermatol. Res. 284, 219–221 (1992)PubMedGoogle Scholar
  133. 133.
    Takemura, N., Takahashi, K., Tanaka, H., et al.: Dietary, but not topical, alpha-linolenic acid suppresses UVB-induced skin injury in hairless mice when compared with linoleic acid&para. Photochem. Photobiol. 76, 657–663 (2002)PubMedGoogle Scholar
  134. 134.
    Puglia, C., Tropea, S., Rizza, L., et al.: In vitro percutaneous absorption studies and in vivo evaluation of anti-inflammatory activity of essential fatty acids (EFA) from fish oil extracts. Int. J. Pharm. 299, 41–48 (2005)PubMedGoogle Scholar
  135. 135.
    Reeve, V.E., Bosnic, M., Boehm-Wilcox, C.: Dependence of photocarcinogenesis and photoimmunosuppression in the hairless mouse on dietary polyunsaturated fat. Cancer Lett. 108, 271–279 (1996)PubMedGoogle Scholar
  136. 136.
    Ibiebele, T.I., van der Pols, J.C., Hughes, M.C., et al.: Dietary pattern in association with squamous cell carcinoma of the skin: a prospective study. Am. J. Clin. Nutr. 85, 1401–1408 (2007)PubMedGoogle Scholar
  137. 137.
    Kune, G.A., Bannerman, S., Field, B., et al.: Diet, alcohol, smoking, serum beta-carotene, and vitamin A in male nonmelanocytic skin cancer patients and controls. Nutr. Cancer 18, 237–244 (1992)PubMedGoogle Scholar
  138. 138.
    Hakim, I.A., Harris, R.B., Ritenbaugh, C.: Fat intake and risk of squamous cell carcinoma of the skin. Nutr. Cancer 36, 155–162 (2000)PubMedGoogle Scholar
  139. 139.
    Fischer, M.A., Black, H.S.: Modification of membrane composition, eicosanoid metabolism, and immunoresponsiveness by dietary omega-3 and omega-6 fatty acid sources, modulators of ultraviolet-carcinogenesis. Photochem. Photobiol. 54, 381–387 (1991)PubMedGoogle Scholar
  140. 140.
    Gately, S., Li, W.W.: Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin. Oncol. 31, 2–11 (2004)PubMedGoogle Scholar
  141. 141.
    Szymczak, M., Murray, M., Petrovic, N.: Modulation of angiogenesis by {omega}-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Blood 111, 3514–3521 (2008)PubMedGoogle Scholar
  142. 142.
    Dempke, W., Rie, C., Grothey, A., et al.: Cyclooxygenase-2: a novel target for cancer chemotherapy? J. Cancer Res. Clin. Oncol. 127, 411–417 (2001)PubMedGoogle Scholar
  143. 143.
    Tapiero, H., Ba, G.N., Couvreur, P., et al.: Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed. Pharmacother. 56, 215–222 (2002)PubMedGoogle Scholar
  144. 144.
    Marks, F., Muller-Decker, K., Furstenberger, G.: A causal relationship between unscheduled eicosanoid signaling and tumor development: cancer chemoprevention by inhibitors of arachidonic acid metabolism. Toxicology 153, 11–26 (2000)PubMedGoogle Scholar
  145. 145.
    Piao, Y.-S., Du, Y.-C., Oshima, H., et al.: Platelet-type 12-lipoxygenase accelerates tumor promotion of mouse epidermal cells through enhancement of cloning efficiency. Carcinogenesis 29, 440–447 (2008)PubMedGoogle Scholar
  146. 146.
    Raso, E., Dome, B., Somlai, B., et al.: Molecular identification, localization and function of platelet-type 12-lipoxygenase in human melanoma progression, under experimental and clinical conditions. Melanoma Res. 14, 245–250 (2004)PubMedGoogle Scholar
  147. 147.
    Fischer, S.M.: Is cyclooxygenase-2 important in skin carcinogenesis? J. Environ. Pathol. Toxicol. Oncol. 21, 183–191 (2002)PubMedGoogle Scholar
  148. 148.
    Kim, H.H., Shin, C.M., Park, C.H., et al.: Eicosapentaenoic acid inhibits UV-induced MMP-1 expression in human dermal fibroblasts. J. Lipid Res. 46, 1712–1720 (2005)PubMedGoogle Scholar
  149. 149.
    Kim, H.H., Cho, S., Lee, S., et al.: Photoprotective and anti-skin-aging effects of eicosapentaenoic acid in human skin in vivo. J. Lipid Res. 47, 921–930 (2006)PubMedGoogle Scholar
  150. 150.
    Hammarstrom, S., Hamberg, M., Samuelsson, B., et al.: Increased concentrations of nonesterified arachidonic acid, 12L-hydroxy-5, 8, 10, 14-eicosatetraenoic acid, prostaglandin E2, and prostaglandin F2alpha in epidermis of psoriasis. Proc. Natl. Acad. Sci. USA 72, 5130–5134 (1975)PubMedGoogle Scholar
  151. 151.
    Barr, R.M., Wong, E., Mallet, A.I., et al.: The analysis of arachidonic acid metabolites in normal, uninvolved and lesional psoriatic skin. Prostaglandins 28, 57–65 (1984)PubMedGoogle Scholar
  152. 152.
    Bartel, R., Marcelo, C.L., Gorsulowsky, D., et al.: Phospholipase A2 and C activity in normal and psoriatic uninvolved and ilesional epidermis. J. Invest. Dermatol. 86, 462 (1986)Google Scholar
  153. 153.
    Brain, S., Camp, R., Dowd, P., et al.: The release of leukotriene B4-like material in biologically active amounts from the lesional skin of patients with psoriasis. J. Invest. Dermatol. 83, 70–73 (1984)PubMedGoogle Scholar
  154. 154.
    Camp, R.D., Mallet, A.I., Woollard, P.M., et al.: The identification of hydroxy fatty acids in psoriatic skin. Prostaglandins 26, 431–447 (1983)PubMedGoogle Scholar
  155. 155.
    Ziboh, V.A., Cohen, K.A., Ellis, C.N., et al.: Effects of dietary supplementation of fish oil on neutrophil and epidermal fatty acids. Modulation of clinical course of psoriatic subjects. Arch. Dermatol. 122, 1277–1282 (1986)PubMedGoogle Scholar
  156. 156.
    Maurice, P.D., Allen, B.R., Barkley, A.S., et al.: The effects of dietary supplementation with fish oil in patients with psoriasis. Br. J. Dermatol. 117, 599–606 (1987)PubMedGoogle Scholar
  157. 157.
    Bjorneboe, A., Smith, A.K., Bjorneboe, G.E., et al.: Effect of dietary supplementation with n-3 fatty acids on clinical manifestations of psoriasis. Br. J. Dermatol. 118, 77–83 (1988)PubMedGoogle Scholar
  158. 158.
    Kettler, A.H., Baughn, R.E., Orengo, I.F., et al.: The effect of dietary fish oil supplementation on psoriasis. Improvement in a patient with pustular psoriasis. J. Am. Acad. Dermatol. 18, 1267–1273 (1988)PubMedGoogle Scholar
  159. 159.
    Dewsbury, C.E., Graham, P., Darley, C.R.: Topical eicosapentaenoic acid (EPA) in the treatment of psoriasis. Br. J. Dermatol. 120, 581 (1989)PubMedGoogle Scholar
  160. 160.
    Escobar, S.O., Achenbach, R., Iannantuono, R., et al.: Topical fish oil in psoriasis – a controlled and blind study. Clin. Exp. Dermatol. 17, 159–162 (1992)PubMedGoogle Scholar
  161. 161.
    Henneicke-von Zepelin, H.H., Mrowietz, U., Farber, L., et al.: Highly purified omega-3-polyunsaturated fatty acids for topical treatment of psoriasis. Results of a double-blind, placebo-controlled multicentre study. Br. J. Dermatol. 129, 713–717 (1993)PubMedGoogle Scholar
  162. 162.
    Grimminger, F., Mayser, P., Papavassilis, C., et al.: A double-blind, randomized, placebo-controlled trial of n-3 fatty acid based lipid infusion in acute, extended guttate psoriasis. Rapid improvement of clinical manifestations and changes in neutrophil leukotriene profile. Clin. Investig. 71, 634–643 (1993)PubMedGoogle Scholar
  163. 163.
    Gupta, A.K., Ellis, C.N., Tellner, D.C., et al.: Double-blind, placebo-controlled study to evaluate the efficacy of fish oil and low-dose UVB in the treatment of psoriasis. Br. J. Dermatol. 120, 801–807 (1989)PubMedGoogle Scholar
  164. 164.
    Schafer, L., Kragballe, K.: Abnormalities in Epidermal Lipid Metabolism in Patients with Atopic Dermatitis. J. Investig. Dermatol. 96, 10–15 (1991)PubMedGoogle Scholar
  165. 165.
    Oliwiecki, S., Burton, J.L., Elles, K., et al.: Levels of essential and other fatty acids in plasma and red cell phospholipids from normal controls and patients with atopic eczema. Acta Derm. Venereol. 71, 224–228 (1991)PubMedGoogle Scholar
  166. 166.
    Manku, M.S., Horrobin, D.F., Morse, N.L., et al.: Essential fatty acids in the plasma phospholipids of patients with atopic eczema. Br. J. Dermatol. 110, 643–648 (1984)PubMedGoogle Scholar
  167. 167.
    Manku, M.S., Horrobin, D.F., Morse, N., et al.: Reduced levels of prostaglandin precursors in the blood of atopic patients: defective delta-6-desaturase function as a biochemical basis for atopy. Prostaglandins Leukot. Med. 9, 615–628 (1982)PubMedGoogle Scholar
  168. 168.
    Laitinen, K., Sallinen, J., Linderborg, K., et al.: Serum, cheek cell and breast milk fatty acid compositions in infants with atopic and non-atopic eczema. Clin. Exp. Allergy 36, 166–173 (2006)PubMedGoogle Scholar
  169. 169.
    Prescott, S.L., Calder, P.C.: N-3 polyunsaturated fatty acids and allergic disease. Curr. Opin. Clin. Nutr. Metab. Care 7, 123–129 (2004)PubMedGoogle Scholar
  170. 170.
    Calder, P.C.: Abnormal fatty acid profiles occur in atopic dermatitis but what do they mean? Clin. Exp. Allergy 36, 138–141 (2006)PubMedGoogle Scholar
  171. 171.
    Sierra, S., Lara-Villoslada, F., Comalada, M., et al.: Dietary fish oil n-3 fatty acids increase regulatory cytokine production and exert anti-inflammatory effects in two murine models of inflammation. Lipids 41, 1115 (2006)PubMedGoogle Scholar
  172. 172.
    Koch, C., Dölle, S., Metzger, M., et al.: Docosahexaenoic acid (DHA) supplementation in atopic eczema: a randomized, double-blind, controlled trial. Br. J. Dermatol. 158, 786–792 (2008)PubMedGoogle Scholar
  173. 173.
    Kunz, B., Ring, J., Braun-Falco, O.: Eicosapentaenoic acid (EPA) treatment in atopic eczema: a prospective double blind trial. Allergy 83, 196 (1987)Google Scholar
  174. 174.
    Soyland, E., Funk, J., Rajka, G., et al.: Dietary supplementation with very long-chain n-3 fatty acids in patients with atopic dermatitis. A double-blind, multicentre study. Br. J. Dermatol. 130, 757–764 (1994)PubMedGoogle Scholar
  175. 175.
    Cordain, L., Lindeberg, S., Hurtado, M., et al.: Acne vulgaris: a disease of Western civilization. Arch. Dermatol. 138, 1584–1590 (2002)PubMedGoogle Scholar
  176. 176.
    Alestas, T., Ganceviciene, R., Fimmel, S., et al.: Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J. Mol. Med. 84, 75–87 (2006)PubMedGoogle Scholar
  177. 177.
    Carter, G.W., Young, P.R., Albert, D.H., et al.: 5-lipoxygenase inhibitory activity of zileuton. J. Pharmacol. Exp. Ther. 256, 929–937 (1991)PubMedGoogle Scholar
  178. 178.
    Surette, M.E., Koumenis, I.L., Edens, M.B., et al.: Inhibition of leukotriene synthesis, pharmacokinetics, and tolerability of a novel dietary fatty acid formulation in healthy adult subjects. Clin. Ther. 25, 948–971 (2003)PubMedGoogle Scholar
  179. 179.
    Sperling, R.I.: The effects of dietary n-3 polyunsaturated fatty acids on neutrophils. Proc. Nutr. Soc. 57, 527–534 (1998)PubMedGoogle Scholar
  180. 180.
    Werner, S., Grose, R.: Regulation of wound healing by growth factors and cytokines. Physiol. Rev. 83, 835–870 (2003)PubMedGoogle Scholar
  181. 181.
    McDaniel, J.C., Belury, M., Ahijevych, K., et al.: Omega-3 fatty acids effect on wound healing. Wound Repair Regen. 16, 337–345 (2008)PubMedGoogle Scholar
  182. 182.
    Jia, Y., Turek, J.J.: Inducible nitric oxide synthase links NF-kappaB to PGE2 in polyunsaturated fatty acid altered fibroblast in-vitro wound healing. Lipids Health Dis. 4, 14 (2005)PubMedGoogle Scholar
  183. 183.
    Terkelsen, L.H., Eskild-Jensen, A., Kjeldsen, H., et al.: Topical application of cod liver oil ointment accelerates wound healing: an experimental study in wounds in the ears of hairless mice. Scand. J. Plast. Reconstr. Surg. Hand Surg. 34, 15–20 (2000)PubMedGoogle Scholar
  184. 184.
    Cardoso, C.R., Souza, M.A., Ferro, E.A., et al.: Influence of topical administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of cutaneous wounds. Wound Repair Regen. 12, 235–243 (2004)PubMedGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Dermatological SciencesUniversity of ManchesterManchesterUK
  2. 2.Photobiology Unit, Dermatological SciencesUniversity of Manchester, Salford Royal HospitalManchesterUK

Personalised recommendations