Skip to main content

Photoprotection by Nicotinamide

  • 2742 Accesses

Abstract

Nicotinamide is the primary precursor of nicotinamide adenine dinucleotide (NAD) [1], which is required for the manufacture of adenosine triphosphate (ATP) in the citric acid cycle (Fig. 11.1). Ultraviolet (UV) irradiation causes both DNA damage and depletion of cellular energy (NAD) [2], which is required for efficient DNA repair. Following UV irradiation, cellular NAD content is an important determinant of cell survival [2]. Human skin cells with reduced levels of NAD have a lower survival rate and higher genomic instability following UV exposure [2], whereas increased intracellular NAD is associated with enhanced protection against photo-oxidative stress [3]. As the precursor of NAD, nicotinamide would be expected to enhance DNA repair in UV-irradiated cells. At low concentrations (less than 3 mM), nicotinamide does enhance repair in UV-irradiated, repair-proficient cell lines, although with higher nicotinamide concentrations (5 mM), DNA repair returned to control levels [4].

Keywords

  • Bullous Pemphigoid
  • Nicotinamide Adenine Dinucleotide
  • Purify Protein Derivative
  • Cellular Energy Metabolism
  • Necrobiosis Lipoidica

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-12264-4_11
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-12264-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Fig. 11.1
Fig. 11.2
Fig. 11.3

References

  1. Jacobson, E.L., Dame, A.J., Pyrek, J.S., et al.: Evaluating the role of niacin in human carcinogenesis. Biochimie 77, 394–398 (1995)

    CAS  CrossRef  PubMed  Google Scholar 

  2. Jacobson, E.L., Giacomoni, P.U., Roberts, M.J., et al.: Optimizing the energy status of skin cells during solar radiation. J. Photochem. Photobiol. B Biol. 63, 141–147 (2001)

    CAS  CrossRef  Google Scholar 

  3. Wright, S.C., Wei, Q.S., Kinder, D.H., et al.: Biochemical pathways of apoptosis: nicotinamide adenine dinucleotide-deficient cells are resistant to tumor necrosis factor or ultraviolet light activation of the 24-kD apoptotic protease and DNA fragmentation. J. Exp. Med. 183, 463–471 (1996)

    CAS  CrossRef  PubMed  Google Scholar 

  4. Riklis, E., Kor, R., Marko, R.: Trends and developments in radioprotection: the effect of nicotinamide on DNA repair. Int. J. Radiat. Biol. 57, 699–708 (1990)

    CAS  CrossRef  PubMed  Google Scholar 

  5. Berger, N.A.: Poly(ADP-ribose) in the cellular response to DNA damage. Radiat. Res. 101, 4–15 (1985)

    CAS  CrossRef  PubMed  Google Scholar 

  6. de Murcia, J.M., Niedergang, C., Trucco, C., et al.: Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells. Proc. Natl. Acad. Sci. USA 94, 7303–7307 (1997)

    CrossRef  PubMed  Google Scholar 

  7. Chatterjee, S., Cheng, M.F., Berger, N.A.: Hypersensitivity to clinically useful alkylating agents and radiation in poly(ADP-ribose) polymerase-deficient cell lines. Cancer Commun. 2, 401–407 (1990)

    CAS  PubMed  Google Scholar 

  8. Virag, L., Szabo, C.: The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev. 54, 375–429 (2002)

    CAS  CrossRef  PubMed  Google Scholar 

  9. Kripke, M.L., Cox, P.A., Alas, L.G., et al.: Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice. Proc. Natl. Acad. Sci. USA 89, 7516–7520 (1992)

    CAS  CrossRef  PubMed  Google Scholar 

  10. Ying, W., Garnier, P., Swanson, R.A.: NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem. Biophys. Res. Commun. 308, 809–813 (2003)

    CAS  CrossRef  PubMed  Google Scholar 

  11. Cosmetic Ingredient Review (CIR) Expert Panel. Final report of the safety assessment of niacinamide and niacin. Int. J. Toxicol. 24(Suppl 5), 1–31 (2005)

    Google Scholar 

  12. Drugdex drug evaluations: niacinamide. In: Klasco, R. (ed.) DrugDex(R) System. Thomsom Micromedex, Greenwood Village, Colorado (2006)

    Google Scholar 

  13. Magni, G., Amici, A., Emanuelli, M., et al.: Enzymology of NAD+ homeostasis in man. Cell. Mol. Life Sci. 61, 19–34 (2004)

    CAS  CrossRef  PubMed  Google Scholar 

  14. Morris, M.C., Evans, D.A., Bienias, J.L., et al.: Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J. Neurol. Neurosurg. Psychiatry 75, 1093–1099 (2004)

    CAS  CrossRef  PubMed  Google Scholar 

  15. Karthikeyan, K., Thappa, D.M.: Pellagra and skin. Int. J. Dermatol. 41, 476–481 (2002)

    CrossRef  PubMed  Google Scholar 

  16. Hegyi, J., Schwartz, R.A., Hegyi, V.: Pellagra: dermatitis, dementia, and diarrhea. Int. J. Dermatol. 43, 1–5 (2004)

    CrossRef  PubMed  Google Scholar 

  17. Murray, M.F.: Tryptophan depletion and HIV infection: a metabolic link to pathogenesis. Lancet Infect. Dis. 3, 644–652 (2003)

    CAS  CrossRef  PubMed  Google Scholar 

  18. Bilu, D., Mamelak, A.J., Nguyen, R.H., et al.: Clinical and epidemiologic characterization of photosensitivity in HIV-positive individuals. Photodermatol. Photoimmunol. Photomed. 20, 175–183 (2004)

    CrossRef  PubMed  Google Scholar 

  19. DiPalma, J.R., Thayer, W.S.: Use of niacin as a drug. Annu. Rev. Nutr. 11, 169–187 (1991)

    CAS  CrossRef  PubMed  Google Scholar 

  20. Petley, A., Macklin, B., Renwick, A.G., et al.: The pharmacokinetics of nicotinamide in humans and rodents. Diabetes 44, 152–155 (1995)

    CAS  CrossRef  PubMed  Google Scholar 

  21. Hoskin, P.J., Stratford, M.R., Saunders, M.I., et al.: Administration of nicotinamide during chart: pharmacokinetics, dose escalation, and clinical toxicity. Int. J. Radiat. Oncol. Biol. Phys. 32, 1111–1119 (1995)

    CAS  PubMed  Google Scholar 

  22. Dragovic, J., Kim, S.H., Brown, S.L., et al.: Nicotinamide pharmacokinetics in patients. Radiother. Oncol. 36, 225–228 (1995)

    CAS  CrossRef  PubMed  Google Scholar 

  23. Stratford, M.R., Rojas, A., Hall, D.W., et al.: Pharmacokinetics of nicotinamide and its effect on blood pressure, pulse and body temperature in normal human volunteers. Radiother. Oncol. 25, 37–42 (1992)

    CAS  CrossRef  PubMed  Google Scholar 

  24. Kaanders, J.H., Stratford, M.R., Liefers, J., et al.: Administration of nicotinamide during a five- to seven-week course of radiotherapy: pharmacokinetics, tolerance, and compliance. Radiother. Oncol. 43, 67–73 (1997)

    CAS  CrossRef  PubMed  Google Scholar 

  25. Yiasemides, E., Sivapirabu, G., Halliday, G.M., et al.: Oral nicotinamide protects against ultraviolet radiation-induced immunosuppression in humans. Carcinogenesis 30, 101–105 (2009)

    Google Scholar 

  26. Knip, M., Douek, I.F., Moore, W.P., et al.: Safety of high-dose nicotinamide: a review. Diabetologia 43, 1337–1345 (2000)

    CAS  CrossRef  PubMed  Google Scholar 

  27. Horsman, M.R., Hoyer, M., Honess, D.J., et al.: Nicotinamide pharmacokinetics in humans and mice: a comparative assessment and the implications for radiotherapy. Radiother. Oncol. 27, 131–139 (1993)

    CAS  CrossRef  PubMed  Google Scholar 

  28. Neumann, R., Rappold, E., Pohl-Markl, H.: Treatment of polymorphous light eruption with nicotinamide: a pilot study. Br. J. Dermatol. 115, 77–80 (1986)

    CAS  CrossRef  PubMed  Google Scholar 

  29. Chaffins, M.L., Collison, D., Fivenson, D.P.: Treatment of pemphigus and linear IgA dermatosis with nicotinamide and tetracycline: a review of 13 cases. J. Am. Acad. Dermatol. 28, 998–1000 (1993)

    CAS  CrossRef  PubMed  Google Scholar 

  30. Bernier, J., Stratford, M.R., Denekamp, J., et al.: Pharmacokinetics of nicotinamide in cancer patients treated with accelerated radiotherapy: the experience of the Co-operative Group of Radiotherapy of the European Organization for Research and Treatment of Cancer. Radiother. Oncol. 48, 123–133 (1998)

    CAS  CrossRef  PubMed  Google Scholar 

  31. Kademian, M., Bechtel, M., Zirwas, M.: Case reports: new onset flushing due to unauthorized substitution of niacin for nicotinamide. J. Drugs Dermatol. 6, 1220–1221 (2007)

    PubMed  Google Scholar 

  32. Kolbach, D.N., Remme, J.J., Bos, W.H., et al.: Bullous pemphigoid successfully controlled by tetracycline and nicotinamide. Br. J. Dermatol. 133, 88–90 (1995)

    CAS  CrossRef  PubMed  Google Scholar 

  33. Fivenson, D.P., Breneman, D.L., Rosen, G.B., et al.: Nicotinamide and tetracycline therapy of bullous pemphigoid. Arch. Dermatol. 130, 753–758 (1994)

    CAS  CrossRef  PubMed  Google Scholar 

  34. Gaudineau, C., Auclair, K.: Inhibition of human P450 enzymes by nicotinic acid and nicotinamide. Biochem. Biophys. Res. Commun. 317, 950–956 (2004)

    CAS  CrossRef  PubMed  Google Scholar 

  35. COLIPA: COLIPA sun protection factor test method. Report No.: 94/289, The European Cosmetic Toiletry and Perfumery Association, Brussells (1994)

    Google Scholar 

  36. Reiche, L., Wojnarowska, F., Mallon, E.: Combination therapy with nicotinamide and tetracyclines for cicatricial pemphigoid: further support for its efficacy. Clin. Exp. Dermatol. 23, 254–257 (1998)

    CAS  CrossRef  PubMed  Google Scholar 

  37. Fivenson, D.P., Kimbrough, T.L.: Lichen planus pemphigoides: combination therapy with tetracycline and nicotinamide. J. Am. Acad. Dermatol. 36, 638–640 (1997)

    CAS  CrossRef  PubMed  Google Scholar 

  38. Berk, M.A., Lorincz, A.L.: The treatment of bullous pemphigoid with tetracycline and niacinamide. A preliminary report. Arch. Dermatol. 122, 670–674 (1986)

    CAS  CrossRef  PubMed  Google Scholar 

  39. Goon, A.T., Tan, S.H., Khoo, L.S., et al.: Tetracycline and nicotinamide for the treatment of bullous pemphigoid: our experience in Singapore. Singapore Med. J. 41, 327–330 (2000)

    CAS  PubMed  Google Scholar 

  40. Chaidemenos, G.C.: Tetracycline and niacinamide in the treatment of blistering skin diseases. Clin. Dermatol. 19, 781–785 (2001)

    CAS  CrossRef  PubMed  Google Scholar 

  41. Burger, D.R., Vandenbark, A.A., Daves, D., et al.: Nicotinamide: suppression of lymphocyte transformation with a component identified in human transfer factor. J. Immunol. 117, 797–801 (1976)

    CAS  PubMed  Google Scholar 

  42. Handfield-Jones, S., Jones, S., Peachey, R.: High dose nicotinamide in the treatment of necrobiosis lipoidica. Br. J. Dermatol. 118, 693–696 (1988)

    CAS  CrossRef  PubMed  Google Scholar 

  43. Shalita, A.R., Smith, J.G., Parish, L.C., et al.: Topical nicotinamide compared with clindamycin gel in the treatment of inflammatory acne vulgaris. Int. J. Dermatol. 34, 434–437 (1995)

    CAS  CrossRef  PubMed  Google Scholar 

  44. Draelos, Z.D., Ertel, K., Berge, C.: Niacinamide-containing facial moisturizer improves skin barrier and benefits subjects with rosacea. Cutis 76, 135–141 (2005)

    PubMed  Google Scholar 

  45. Hakozaki, T., Minwalla, L., Zhuang, J., et al.: The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br. J. Dermatol. 147, 20–31 (2002)

    CAS  CrossRef  PubMed  Google Scholar 

  46. Tanno, O., Ota, Y., Kitamura, N., et al.: Nicotinamide increases biosynthesis of ceramides as well as other stratum corneum lipids to improve the epidermal permeability barrier. Br. J. Dermatol. 143, 524–531 (2000)

    CAS  CrossRef  PubMed  Google Scholar 

  47. Soma, Y., Kashima, M., Imaizumi, A., et al.: Moisturizing effects of topical nicotinamide on atopic dry skin. Int. J. Dermatol. 44, 197–202 (2005)

    CAS  CrossRef  PubMed  Google Scholar 

  48. Halliday, G.M., Rana, S.: The effects of solar radiation on the immune response in humans. In: Giacomoni, P.U. (ed.) Biophysical and Physiological Effects of Solar Radiation on Human Skin. The Royal Society for Chemistry, Cambridge pp. 127–163 (2007)

    Google Scholar 

  49. Halliday, G.M.: Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis. Mutat. Res. 571, 107–120 (2005)

    CAS  PubMed  Google Scholar 

  50. Kuchel, J.M., Barnetson, R.S., Halliday, G.M.: Nitric oxide appears to be a mediator of solar-simulated ultraviolet radiation-induced immunosuppression in humans. J. Invest. Dermatol. 121, 587–593 (2003)

    CAS  CrossRef  PubMed  Google Scholar 

  51. Yuen, K.S., Nearn, M.R., Halliday, G.M.: Nitric oxide-mediated depletion of Langerhans cells from the epidermis may be involved in UVA radiation-induced immunosuppression. Nitric Oxide 6, 313–318 (2002)

    CAS  CrossRef  PubMed  Google Scholar 

  52. Hornig-Do, H.T., von Kleist-Retzow, J.C., KLanz, K., et al.: Human epidermal keratinocytes accumulate superoxide due to low activity of Mn-SOD, leading to mitochondrial functional impairment. J. Invest. Dermatol. 127, 1084–1093 (2007)

    CAS  CrossRef  PubMed  Google Scholar 

  53. Kuchel, J.M., Barnetson, R.S.C., Halliday, G.M.: Cyclobutane pyrimidine dimer formation is a molecular trigger for solar-simulated ultraviolet radiation-induced suppression of memory immunity in humans. Photochem. Photobiol. Sci. 4, 577–582 (2005)

    CAS  CrossRef  PubMed  Google Scholar 

  54. Halliday, G.M.B., Bock, V.L., Moloney, F.J., Lyons, J.G.: SWI/SNF: a chromatin-remodelling complex with a role in carcinogenesis. Int. J. Biochem. Cell. Biol. 41, 725–728

    Google Scholar 

  55. Fousteri, M., Mullenders, L.H.: Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects. Cell Res. 18, 73–84 (2008)

    CAS  CrossRef  PubMed  Google Scholar 

  56. Byrne, S.N., Halliday, G.M.: B cells activated in lymph nodes in response to ultraviolet irradiation or by interleukin-10 inhibit dendritic cell induction of immunity. J. Invest. Dermatol. 124, 570–578 (2005)

    CAS  CrossRef  PubMed  Google Scholar 

  57. Rana, S., Byrne, S.N., MacDonald, L.J., et al.: Ultraviolet B suppresses immunity by inhibiting effector and memory T cells. Am. J. Pathol. 172, 993–1004 (2008)

    CrossRef  PubMed  Google Scholar 

  58. Gensler, H.L.: Prevention of photoimmunosuppression and photocarcinogenesis by topical nicotinamide. Nutr. Cancer 29, 157–162 (1997)

    CAS  CrossRef  PubMed  Google Scholar 

  59. Gensler, H.L., Williams, T., Huang, A.C., et al.: Oral niacin prevents photocarcinogenesis and photoimmunosuppression in mice. Nutr. Cancer 34, 36–41 (1999)

    CAS  CrossRef  PubMed  Google Scholar 

  60. Ludwig, A., Dietel, M., Schafer, G., et al.: Nicotinamide and nicotinamide analogues as antitumor promoters in mouse skin. Cancer Res. 50, 2470–2475 (1990)

    CAS  PubMed  Google Scholar 

  61. Damian, D.L., Halliday, G.M.: Measurement of ultraviolet radiation-induced suppression of recall contact and delayed-type hypersensitivity in humans. Methods 28, 34–45 (2002)

    CAS  CrossRef  PubMed  Google Scholar 

  62. Phan, T.A., Halliday, G.M., Barnetson, R.S., et al.: Spectral and dose dependence of ultraviolet radiation-induced immunosuppression. Front. Biosci. 11, 394–411 (2006)

    CAS  CrossRef  PubMed  Google Scholar 

  63. Halliday, G.M., Bestak, R., Yuen, K.S., et al.: UVA-induced immunosuppression. Mutat. Res. 422, 139–145 (1998)

    CAS  PubMed  Google Scholar 

  64. Damian, D.L., Barnetson, R.S., Halliday, G.M.: Low-dose UVA and UVB have different time courses for suppression of contact hypersensitivity to a recall antigen in humans. J. Invest. Dermatol. 112, 939–944 (1999)

    CAS  CrossRef  PubMed  Google Scholar 

  65. Wolf, P., Hoffmenn, C., Quehenberger, F., et al.: Immune protection factors of chemical sunscreens measured in the local contact hypersensitivity model in humans. J. Invest. Dermatol. 121, 1080–1087 (2003)

    CAS  CrossRef  PubMed  Google Scholar 

  66. Damian, D.L., Barnetson, R.S., Halliday, G.M.: Effects of low-dose ultraviolet radiation on in vivo human cutaneous recall responses. Australas. J. Dermatol. 42, 161–167 (2001)

    CAS  CrossRef  PubMed  Google Scholar 

  67. Gensler, H.L., Williams, T., Huang, A.C., et al.: Oral niacin prevents photocarcinogenesis and photoimmunosuppression in mice. Nutr. Cancer 34, 36–41 (1999)

    CAS  CrossRef  PubMed  Google Scholar 

  68. Gensler, H.L.: Prevention of photoimmunosuppression and photocarcinogenesis by topical nicotinamide. Nutr. Cancer 29, 157–162 (1997)

    CAS  CrossRef  PubMed  Google Scholar 

  69. Damian, D.L., Patterson, C.R.S., Stapelberg, M., et al.: Ultraviolet radiation-induced immunosuppression is greater in men and prevented by topical nicotinamide. J. Invest. Dermatol. 128, 447–454 (2008)

    CAS  PubMed  Google Scholar 

  70. Bouros, D., Zeros, G., Panaretos, C., et al.: Palpation vs pen method for the measurement of skin tuberculin reaction (Mantoux test). Chest 99, 416–419 (1991)

    CAS  CrossRef  PubMed  Google Scholar 

  71. Damian, D.L., Halliday, G.M., Taylor, C.A., et al.: Ultraviolet radiation induced suppression of Mantoux reactions in humans. J. Invest. Dermatol. 110, 824–827 (1998)

    CAS  CrossRef  PubMed  Google Scholar 

  72. Sivapirabu, G., Yiasemides, E., Halliday, G.M., Park, J., Damian, D.L.: Topical nicotinamide modulates cellular energy metabolism and provides broad-spectrum protection against ultraviolet radiation-induced immunosuppression in humans. British Journal of Dermatology 161, 1357–1364 (2009)

    Google Scholar 

  73. Bissett, D.L., Oblong, J.E., Berge, C.A.: Niacinamide: A B vitamin that improves aging facial skin appearance. Dermatol. Surg. 31, 860–865 (2005)

    CAS  CrossRef  PubMed  Google Scholar 

  74. Kawada, A., Konishi, N., Oiso, N., et al.: Evaluation of anti-wrinkle effects of a novel cosmetic containing niacinamide. J. Dermatol. 35, 637–642 (2008)

    CAS  CrossRef  PubMed  Google Scholar 

  75. Hazozaki, T., Minwalla, L., Zhuang, J., et al.: The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br. J. Dermatol. 147, 20–31 (2002)

    CrossRef  Google Scholar 

  76. Ungerstedt, J.S., Blomback, M., Soderstrom, T.: Nicotinamide is a potent inhibitor of proinflammatory cytokines. Clin. Exp. Immunol. 131, 48–52 (2003)

    CAS  CrossRef  PubMed  Google Scholar 

  77. Hedman, M., Ludvigsson, J., Faresjo, M.K.: Nicotinamide reduces high secretion of IFN-gamma in high-risk relatives even though it does not prevent type 1 diabetes. J. Interferon Cytokine Res. 26, 207–213 (2006)

    CAS  CrossRef  PubMed  Google Scholar 

  78. Bogan, K.L., Brenner, C.: Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 28, 115–130 (2008)

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diona L. Damian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Damian, D.L., Halliday, G.M. (2010). Photoprotection by Nicotinamide. In: Krutmann, J., Humbert, P. (eds) Nutrition for Healthy Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12264-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12264-4_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12263-7

  • Online ISBN: 978-3-642-12264-4

  • eBook Packages: MedicineMedicine (R0)