Sound Agents

  • Philippe Codognet
  • Olivier Pasquet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6025)


Sound Agents is a media intallation relating real space and virtual sound space. Each agent is a virtual entity producing sound, which has its own autonomous behavior. This sound is spatialized in the real installation space through many loudspeakers (24 loudspeakers + 1 subwoofer), creating thus an ever-changing ambient music which is dynamically spatialized and modified by the movement of the virtual agents. We implemented a first propotype of this general scheme by using swarm intelligence and the classical ant foraging simulation to generate ambient soundscape, associating sounds to ants movements and pheromone levels. We further designed a declarative high-level language for describing autonomous behaviors of the virtual sound agents.This language is based on the notion of goal constraints and simple constraint-based local search techniques are defined as a behavior engine.


Sound Source Constraint Satisfaction Problem Swarm Intelligence Virtual Agent Virtual Human 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckers, R., Deneubourg, J.L., Goss, S.: Trail laying behaviour during food recruitment in the ant Lasius niger (L). Insectes Sociaux 39, 59–72 (1992)CrossRefGoogle Scholar
  2. 2.
    Blackwell, T., Young, M.: Self-organized music. In: Organised Sound, vol. 9(2), pp. 123–136. Cambridge University Press, Cambridge (2004)Google Scholar
  3. 3.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  4. 4.
    Braitenberg, V.: Vehicles - Experiments in Synthetic Psychology. MIT Press, Cambridge (1984)Google Scholar
  5. 5.
    Codognet, P.: Animating virtual creatures by constraint-based adaptive search. In: Proceedings of VSMM 2000, 4th Int. Conf. on Virtual Systems and Multimedia, Gifu, Japan. IOS Press, Amsterdam (2000)Google Scholar
  6. 6.
    Codognet, P., Diaz, D.: An Efficient Library for Solving CSP with Local Search. In: Ibaraki, T. (ed.) Proc. MIC 2003, 5th International Conference on Metaheuristics, Kyoto, Japan (2003)Google Scholar
  7. 7.
    Codognet, P., Pasquet, O.: Swarm Intelligence for Generative Music. In: Proceedings of ISM 2009, IEEE International Symposium on Multimedia. IEEE Press, San Diego (2009)Google Scholar
  8. 8.
    Couzin, I., Krause, J., James, R., Ruxton, G.D., Franks, N.R.: Collective Memory and Spatial Sorting in Animal Groups. Journal of Theoretical Biology 218(1), 1–11Google Scholar
  9. 9.
    Dahlstedt, P., McBurney, P.: Musical Agents: Towards Computer-aided Music Composition using Autonomous Software Agents. Leonardo 39(5), 469–470 (2006)CrossRefGoogle Scholar
  10. 10.
    Davis, T., Karamanlis, O.: Gestural Control of Sonic Swarms: Composing with Grouped Sound Objects. In: Proc. SMC 2007, 4th Sound and Music Conference, Lefkada, Greece (2007)Google Scholar
  11. 11.
    Hutchinson, J., Gigerenzer, G.: Simple heuristics and rules of thumb: Where psychologists and behavioural biologists might meet. Behavioural Processes 69(2), 97–124 (2005)CrossRefGoogle Scholar
  12. 12.
    Jin, X., Wang, C.C.L., Huang, S., Xu, J.: Interactive control of real-time crowd navigation in virtual environment. In: Proc. 2007 ACM symposium on Virtual Reality Software and Technology, pp. 109–112. ACM Press, New York (2007)CrossRefGoogle Scholar
  13. 13.
    Krause, J., Ruxton, G.D., Krause, S.: Swarm intelligence in animals and humans. Trends in ecology & evolution 24(9) (2009)Google Scholar
  14. 14.
    Lamarche, F., Donikian, S.: Crowd of Virtual Humans: a New Approach for Real Time Navigation in Complex and Structured Environments. Computer Graphics Forum 23(3), 509–518 (2004)CrossRefGoogle Scholar
  15. 15.
    Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K.: MASON: A New Multi-Agent Simulation Toolkit. In: Proc. SwarmFest 2004, 8th Swarm Users/Researchers Conference, Ann Arbor, USA (2004)Google Scholar
  16. 16.
    Musse, S.R., Thalmann, D.: Hierarchical Model for Real Time Simulation of Virtual Human Crowds. IEEE Transactions on Visualization and Computer Graphics 7(2), 152–164 (2001)CrossRefGoogle Scholar
  17. 17.
    Noma, T., Zhao, L., Badler, N.I.: Design of a Virtual Human Presenter. IEEE Computer Graphics and Applications 20(4), 79–85 (2000)CrossRefGoogle Scholar
  18. 18.
    Pedica, C., Vilhjalmsson, H.: Social Perception and Steering for Online Avatars. In: Prendinger, H., Lester, J.C., Ishizuka, M. (eds.) IVA 2008. LNCS (LNAI), vol. 5208, pp. 104–116. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer Graphics 21(4), 25-34 (1987); SIGGRAPH 1987 Conference Proceedings Google Scholar
  20. 20.
    Reynolds, C.W.: Steering behaviors for autonomous characters. In: Proc. of 1999 Game Developers Conference, pp. 763–782. Miller Freeman Group, San Francisco (1999)Google Scholar
  21. 21.
    Robinson, E., Jackson, D., Holcombe, M., Ratnieks, F.: ‘No entry’ signal in ant foraging. Nature 438(7067), 442 (2005)CrossRefGoogle Scholar
  22. 22.
    Schmajuck, N. (ed.): Special issue on Biologically-inspired models of Navigation, Adaptive Behavior, vol. 6(3/4) (1998)Google Scholar
  23. 23.
    Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Proc. of the ACM SIGGRAPH 2005, Symposium on Computer Animation. ACM, New York (2005)Google Scholar
  24. 24.
    Theile, G.: Wave Field Synthesis – A Promising Spatial Audio Rendering Concept. In: Proc. DAFX 2004, 7th Int. Conference on Digital Audio Effects, Naples, Italy (2004)Google Scholar
  25. 25.
    Treuille, A., Cooper, S., Popovic, Z.: Continuum crowds. ACM Transactions on Computer Graphics 25(3), 1160–1168 (2006); SIGGRAPH 2006 Conference ProceedingsGoogle Scholar
  26. 26.
    Xiao, H., He, C.: Behavioral Animation Model for Real-Time Crowd Simulation. In: Proc. of 2009 International Conference on Advanced Computer Control. IEEE Press, Los Alamitos (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Philippe Codognet
    • 1
  • Olivier Pasquet
    • 2
  1. 1.Information Technology CenterJFLI – CNRS / UPMC / University of TokyoTokyoJapan
  2. 2.Independent sound artist & IRCAMParisFrance

Personalised recommendations