Skip to main content

Generative Art and Evolutionary Refinement

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6025)

Abstract

In considering a case study, we examine the process of promoting emergence and creativity within an evolutionary art system using the technique of evolutionary refinement. That is, for the complex, difficult to predict generative scheme based on a model for simulating cellular morphogenesis that forms the generative component of an evolutionary art system, we discuss how we proceed in stages to develop, analyze, focus, and re-target evolved genetic material for aesthetic purposes — in this instance aesthetic pattern formation.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-12242-2_30
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-12242-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burns, K.: Atoms of EVE: a Bayesian basis for aesthetics of style in sketching. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing 20, 185–199 (2006)

    CrossRef  Google Scholar 

  2. Chavoya, A., Duthen, Y.: An artificial development model for cell pattern generation. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 61–71. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  3. Colton, S.: Automatic invention of fitness functions with applications to scene generation. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 381–391. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  4. Colton, S., Torres, P.: Evolving aspproximate image filters. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 467–477. Springer, Heidelberg (2009)

    Google Scholar 

  5. Dorin, A., Korb, K.: A new definition of creativity. In: Korb, K., Randall, M., Hendtlass, T. (eds.) ACAL 2009. LNCS, vol. 5865, pp. 11–21. Springer, Heidelberg (2009)

    Google Scholar 

  6. Edmond, R., Sipper, M., Capcarrére, M.: Design, observation, surprise! A test of emergence. Artificial Life 5(3), 225–240 (1999)

    CrossRef  Google Scholar 

  7. Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Proceedings of the Fourth European Conference on Artificial Life (ECAL 1997), pp. 205–213. Springer, Heidelberg (1997)

    Google Scholar 

  8. Galanter, P.: What is generative art? Complexity theory as a context for art theory. In: Soddu, C. (ed.) Proceedings of the Sixth International Conference and Exhibition on Generative Art (2003)

    Google Scholar 

  9. Greenfield, G.: Abstract art from a model for cellular morphogenesis. In: Sarhangi, R., Moody, R. (eds.) BRIDGES 2005 Conference Proceedings, pp. 137–142 (2005)

    Google Scholar 

  10. Greenfield, G.: Genetic learning for biologically inspired aesthetic processes. International Journal on Artificial Intelligence Tools 15(4), 577–598 (2006)

    CrossRef  Google Scholar 

  11. Greenfield, G.: The void series – generative art using regulatory genes. In: Soddu, C. (ed.) Proceedings of the Seventh International Conference and Exhibition on Generative Art, Alea Design, vol. 1, pp. 70–77 (2004)

    Google Scholar 

  12. Jacobsen, T.: Bridging the arts and sciences: a framework for the psychology of aesthetics. Leonardo 39(2), 155–162 (2006)

    CrossRef  Google Scholar 

  13. Machado, P., Romero, J., Manaris, B.: Experiments in computational aesthetics. In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution, pp. 381–415. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  14. McCormack, J., Dorin, A.: Art, emergence and the computational sublime. In: Second Iteration (CDROM), Melbourne Centre for Electronic Media Arts. Monash University (2001)

    Google Scholar 

  15. Monro, G.: Emergence and generative art. Leonardo 42(5), 475–477 (2009)

    CrossRef  Google Scholar 

  16. Ross, B., Ralph, W., Zong, H.: Evolutionary image synthesis using a model of aesthetics. In: 2006 IEEE Congress on Evolutionary Computation, pp. 3832–3839. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  17. Saunders, R., Gero, J.: Artificial creativity: a synthetic approach to the study of creative behavior. In: Gero, J. (ed.) Creative Design V, Key Centre of Design Computing and Cognition (2002)

    Google Scholar 

  18. Schmidhuber, J.: Simple algorithmic principles of discovery, subjective beauty, selective attention, curosity and creativity. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 26–38. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  19. Young, D.: A local activator-inhibitor model of vertebrate skin patterns. In: Wolfram, S. (ed.) Theory & Application of Cellular Automata, pp. 320–327. World Scientific, Singapore (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Greenfield, G. (2010). Generative Art and Evolutionary Refinement. In: , et al. Applications of Evolutionary Computation. EvoApplications 2010. Lecture Notes in Computer Science, vol 6025. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12242-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12242-2_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12241-5

  • Online ISBN: 978-3-642-12242-2

  • eBook Packages: Computer ScienceComputer Science (R0)