Skip to main content

Operational Integration of Spaceborne Measurements of Lava Discharge Rates and Sulfur Dioxide Concentrations for Global Volcano Monitoring

  • Chapter
  • First Online:

Part of the book series: Advanced Technologies in Earth Sciences ((ATES))

Abstract

We present the rationale and the main initial achievements of the operational prototype of the first multi-method system for the real-time, unsupervised, quantitative monitoring of erupted masses simultaneously at all active volcanoes in Europe, Africa, the Eastern Antilles and the ocean islands. The system is structured as a multi-pole, geographically distributed system, where raw datasets from space payloads SEVIRI, MODIS, GOME-2, IASI and OMI are acquired at four downlink stations, distributed to, and automatically processed at six locations in four European nations, then returned to a central post-processor for real-time alert and Wide Area Network display. This architecture is aimed at optimizing quality and timeliness of the advanced methods run within it, and to let the inherent technical knowledge remain with inventors without concern for individual intellectual property. Before entering operations early in 2012, the system underwent extensive testing in 2011 during the major eruptions of Nabro (Eritrea) and Nyamulagira (DR Congo), which are presented here.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bluth GJS, Carn SA (2008) Exceptional sulfur degassing from Nyamuragira volcano 1979–2005. Int J Remote Sens 29(22):6667–6685

    Article  Google Scholar 

  • Bovensmann H, Burrows JP, Buchwitz M, Frerick J, Noël S, Rozanov VV, Chance KV, Goede APH (1999) SCIAMACHY: Mission objectives and measurement modes. J Atmos Sci 56:127–150

    Article  Google Scholar 

  • Clarisse L, Coheur P-F, Prata AJ, Hurtmans D, Razavi A, Phulpin T, Hadji-Lazaro J, Clerbaux C (2008) Tracking and quantifying volcanic \({\rm {SO}}_{2}\) with IASI, the September 2007 eruption at Jebel-at-Tair. Atmos Chem Phys 8:7723–7734

    Article  Google Scholar 

  • Clarisse L, Prata AJ, Lacour J-L, Hurtmans D, Clerbaux C (2010a) A correlation method for volcanic ash detection using hyperspectral infrared measurements. Geophys Res Lett 37:L19806. doi:10.1029/2010GL044828

    Article  Google Scholar 

  • Clarisse L, Hurtmans D, Prata AJ, Karagulian F, Clerbaux C, Mazière MD, Coheur P-F (2010b) Retrieving radius, concentration, optical depth and mass of different types of aerosols from high-resolution infrared nadir spectra. Appl Opt 49:3713–3722

    Article  Google Scholar 

  • Clarisse L, Hurtmans D, Clerbaux C, Hadji-Lazaro J, Ngadi Y, Coheur P-F (2012) Retrieval of sulfur dioxide from the infrared atmospheric sounding interferometer (IASI). Atmos Measur Technol 5:581–594. doi:10.5194/amt-5-581-2012

    Article  Google Scholar 

  • Clarisse L, R’Honi Y, Coheur P-F, Hurtmans D, Clerbaux C (2011b) Thermal infrared nadir observations of 24 atmospheric gases. Geophys Res Lett 38:L10802. doi:10.1029/2011GL047271

    Google Scholar 

  • Clerbaux C, Boynard A, Clarisse L, George M, Hadji-Lazaro J, Herbin H, Hurtmans D, Pommier M, Razavi A, Turquety S, Wespes C, Coheur P-F (2009) Monitoring of atmospheric composition using the thermal infrared IASI/METOP sounder. Atmos Chem Phys 9:6041–6054

    Article  Google Scholar 

  • Corradini S, Merucci L, Prata AJ, Piscini A (2010) Volcanic ash and SO2 in the 2008 Kasatochi eruption: retrievals comparison from different IR satellite sensors. J Geophys Res 115:D00L21. doi:10.1029/2009JD013634 [printed 116(D2), 2011]

    Google Scholar 

  • Crisp J, Baloga S (1990) A model for lava flows with two thermal components. J Geophys Res 95(B2):1255–1270

    Article  Google Scholar 

  • de Graaf M, Tuinder O, Tilstra G (2010) O3MSAF Algorithm Theoretical Basis Document for ARS, O3MSAF/KNMI/ATBD/002. Koninklijk Nederlands Meteorologisch Instituut (NL) 1:26

    Google Scholar 

  • Dozier J (1981) A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens Environ 11:221–229

    Article  Google Scholar 

  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A (2011) A new algorithm for processing Interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens. doi:10.1109/TGRS.2011.2124465

  • Flynn LP, Mouginis-Mark P (1992) Cooling rate of on active Hawaiian lava flow from night-time spectroradiometer measurements. Geophys Res Lett 19:1783–1786

    Article  Google Scholar 

  • Flynn LP, Mouginis-Mark PJ, Horton KA (1994) Distribution of thermal area an active lava flow field: Landsat observations of Kilauea, Hawaii, July 1991. Bull Volcanol 56:284–296

    Article  Google Scholar 

  • Gangale G, Prata AJ, Clarisse L (2010) The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements. Remote Sens Environ 114(2):414–425

    Article  Google Scholar 

  • Glaze L, Francis PW, Rothery DA (1989) Measuring thermal budget of active volcanoes by satellite remote sensing. Nature 338:144–146

    Article  Google Scholar 

  • Gottwald M, Bovensmann H (eds) (2011) SCIAMACHY: Exploring the changing Earth’s atmosphere. Springer, New York. doi:10.1007/978-90-481-9896-2 [ISBN 978-90-481-9895-5]

  • Herman JR, Bhartia PK, Torres O, Hsu C, Seftor C, Celarier E (1997) Global distributions of UV-absorbing aerosols from Nimbus 7/TOMS data. J Geophys Res 102(D14):16911–16922. doi:10.1029/96JD03680

    Article  Google Scholar 

  • Hirn B, Di Bartola C, Ferrucci F (2008) Spaceborne monitoring 2000–2005 of the Pu’u’O’o-Kupaianaha (Hawaii) eruption by synergetic merge of multispectral payloads ASTER and MODIS. IEEE Trans Geosci Remote Sens 46(10):2848–2856

    Article  Google Scholar 

  • Hirn B, Di Bartola C, Ferrucci F (2009) Combined use of SEVIRI and MODIS for detecting, measuring and monitoring active lava flows at erupting volcanoes. IEEE Trans Geosci Remote Sens 47(8):2923–2930

    Article  Google Scholar 

  • Kaminski E, Tait S, Ferrucci F, Martet M, Hirn B, Husson P (2011) Estimation of ash injection in the atmosphere by basaltic volcanic plumes: the case of the Eyjafjallajökull 2010 eruption. J Geophys Res 116:B00C02. doi:10.1029/2011JB008297

    Google Scholar 

  • Krotkov NA, Carn SA, Krueger AJ, Bhartia PK, Yang K (2006) Band residual difference algorithm for retrieval of \({\rm {SO}}_{2}\) from the Aura ozone monitoring instrument. IEEE Trans Geosci Remote Sens 44(5):1259–1266. doi:10.1109/TGRS.2005.861932

    Google Scholar 

  • Levelt PF, van den Oord GHJ, Dobber MR, Mälkki A, Visser H, de Vries J, Stammes P, Lundell J, Saari H (2006) The ozone monitoring instrument. IEEE Trans Geosci Remote Sens 44(5):1093–1101. doi:10.1109/TGRS.2006.872333

    Article  Google Scholar 

  • Matson M, Dozier J (1981) Identification of subresolution high temperature sources using a thermal infrared sensor. Photogram Eng Remote Sens 47:1311–1318

    Google Scholar 

  • Nowlan CR, Liu X, Chance K, Cai Z, Kurosu TP, Lee C, Martin RV (2011) Retrievals of sulfur dioxide from the global ozone monitoring experiment 2 (GOME-2) using an optimal estimation approach: algorithm and initial validation. J Geophys Res 116:D18301. doi:10.1029/2011JD015808

    Article  Google Scholar 

  • Oppenheimer C (1991) Lava flow cooling estimated from Landsat Thematic Mapper infrared data: the Lonquimay Eruption (Chile, 1989). J Geophys Res 96:21865–21878

    Article  Google Scholar 

  • Oppenheimer C, Francis PW, Rothery DA, Carlton RWT, Glaze LS (1993a) Infrared image analysis of volcanic thermal features: Lascar Volcano, Chile, 1984–1992. J Geophys Res 98:4269–4286

    Article  Google Scholar 

  • Oppenheimer C, Rothery DA, Francis PW (1993b) Thermal distribution at fumarole fields: implication for infrared remote sensing of active volcanoes. J Volcanol Geoth Res 55:97–115

    Article  Google Scholar 

  • Pieri DC, Baloga SM (1986) Eruption rate, area, and length relationships for some Hawaiian lava flows. J Volcanol Geoth Res 30:29–45

    Article  Google Scholar 

  • Pieri DC, Glaze LS, Abrams MJ (1990) Thermal radiance observations of an active lava flow during the June 1984 eruption of Mt Etna. Geology 18:1018–1022

    Article  Google Scholar 

  • Prata AJ, Bernardo C (2009) Retrieval of volcanic ash particle size, mass and optical depth from a ground-based thermal infrared camera. J Volcanol Geoth Res 186:91–107

    Article  Google Scholar 

  • Prata AJ, Prata AT (2012) Eyjafjallajökull volcanic ash concentrations determined using spin enhanced visible and infrared imager measurements. J Geophys Res 117:D00U23. doi:10.1029/2011JD016800

    Google Scholar 

  • Rix M, Valks P, Hao N, van Geffen J, Clerbaux C, Clarisse L, Coheur P-F, Loyola DG, Erbertseder T, Zimmer W, Emmadi S (2009) Satellite monitoring of volcanic sulfur dioxide emissions for early warning of volcanic hazards. IEEE J Sel Top Appl Earth Obs Remote Sens 2:196–206. doi:10.1109/JSTARS.2009.2031120 [ISSN: 1939-1404]

    Google Scholar 

  • Rix M, Valks P, Hao N, Loyola DG, Schlager H, Huntrieser HH, Flemming J, Koehler U, Schumann U, Inness A (2012) Volcanic \({\rm {SO}}_2\), BrO and plume height estimations using GOME-2 satellite measurements during the eruption of Eyjafjallajökull in May 2010. J Geophys Res 117:D00U19. doi: 10.1029/2011JD016718

    Google Scholar 

  • Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength infrared data from satellites. J Geophys Res 93:7993–8008

    Article  Google Scholar 

  • Theys N, Campion R, Clarisse L, Brenot H, van Gent J, Dils B, Coheur P-F, Van Roozendael M, Hurtmans D, Clerbaux C, Corradini S, Merucci L, Tait S, Ferrucci F (2012) Volcanic \({\rm {SO}}_2\) fluxes derived from satellite data: a survey using OMI, GOME-2, IASI and MODIS. Atmos Chem Phys Discuss 12(12):31349

    Article  Google Scholar 

  • Tilstra LG, de Graaf M, Aben I, Stammes P (2007) Analysis of 5 years of SCIAMACHY absorbing aerosol index data. In: Proceedings of the 2007 Envisat symposium, ESA Special Publication SP-636

    Google Scholar 

  • Valks P, Loyola D, Hao N, Rix M, Slijkhuis S (2009) Algorithm theoretical basis document for GOME-2 total column products of ozone, minor trace gases and cloud properties (GDP 4.2 for O3MSAF OTO and NTO), O3MSAF, DLR/GOME-2/ATBD/01 rel.2009-01-28

    Google Scholar 

  • Van Geffen J, Van Roozendael M, Di Nicolantonio W, Tampellini L, Valks P, Erbetseder T, Van der A R (2007) Monitoring of volcanic activity from satellite as part of GSE PROMOTE. In: Lacoste H, Ouwehand L (eds) Proceedings of the 2007 ENVISAT symposium, 23–27 April 2007, Montreux, Switzerland. ESA publication, Noordwijk, SP-636

    Google Scholar 

  • Van Geffen J, Van Roozendael M, Rix M, Valks P (2008) Initial validation of GOME-2 GDP 4.2 \({\rm {SO}}_{2}\) total columns (OTO/ \({\rm {SO}}_{2})\)-ORR B, O3MSAF validation report, TN-IASB-GOME2-O3MSAF-SO2-01.1

    Google Scholar 

  • Vergniolle S, Jaupart C (1986) Separated two-phase flow and basaltic eruptions. J Geophys Res 91(B12):12842–12860. doi:10.1029/JB091iB12p12842

    Article  Google Scholar 

  • Vergniolle S, Jaupart C (1990) Dynamics of degassing at Kilauea Volcano, Hawaii. J Geophys Res 95(B3):2793–2809. doi:10.1029/89JB03071 [ISSN: 0148-0227]

    Article  Google Scholar 

  • Yang K, Krotkov N, Krueger AJ, Carn S, Bhartia PK, Levelt P (2007) Retrieval of large volcanic \({\rm {SO}}_{2}\) columns from the Aura ozone monitoring instrument (OMI): comparisons and limitations. J Geophys Res 112:D24S43. doi: 10.1029/2007JD008825

    Google Scholar 

  • Yang K, Liu X, Bhartia P, Krotkov N, Carn SA, Hughes E, Krueger AJ, Spurr R, Trahan S (2010) Direct retrieval of sulfur dioxide amount and altitude from spaceborne hyperspectral UV measurements: theory and application. J Geophys Res 115:D00L09. doi:10.1029/2010JD013982

    Google Scholar 

  • Wright R, Flynn LP, Garbeil H, Harris AJL, Pilger E (2004) MODVOLC: Near-real-time thermal monitoring of global volcanism. J Volcanol Geoth Res 135:29–49

    Article  Google Scholar 

Download references

Acknowledgments

EVOSS (http://www.evoss.eu) “European Volcano Observatory Space Services” is a project funded in the frame of the European Commission FP7—GMES, with contract no. 242535 of the Research Executive Agency. SACS (http://sacs.aeronomie.be) “Support to Aviation Control Service” is a project of the European Space Agency ESA projects to support procedures of avoidance of volcanic ash based on satellite observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ferrucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ferrucci, F. et al. (2014). Operational Integration of Spaceborne Measurements of Lava Discharge Rates and Sulfur Dioxide Concentrations for Global Volcano Monitoring. In: Wenzel, F., Zschau, J. (eds) Early Warning for Geological Disasters. Advanced Technologies in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12233-0_16

Download citation

Publish with us

Policies and ethics