Skip to main content

Cellular Automata Composition Techniques for Spatial Dynamics Simulation

  • Chapter
  • First Online:
Simulating Complex Systems by Cellular Automata

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

A Cellular Automaton (CA) is nowadays an object of growing interest as a mathematical model for spatial dynamics simulation. Due to its ability to simulate nonlinear and discontinuous processes, CA is expected [1,2] to become a complement to partial differential equations (PDE). Particularly, CA may be helpful when there is no other mathematical model of a phenomenon which is to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Toffolli, N. Margolus, Cellular Automata Machines (MIT Press, Cambridge, MA, 1987)

    Google Scholar 

  2. S. Wolfram, A New Kind of Science (Wolfram Media Inc., Champaign, IL, 2002)

    MATH  Google Scholar 

  3. O. Bandman, Comparative study of cellular automata diffusion models, ed. by V. Malyshkin, PaCT-1999, LNCS vol. 1662 (Springer, Berlin, 1999), pp. 395–404

    Google Scholar 

  4. G.G. Malinetski, M.E. Stepantsov, Modeling diffusive processes by cellular automata with Margolus neighborhood. Zhurnal Vychislitelnoy Matematiki i Mathematicheskoy Phisiki 36(6), 1017–1021 (1998)

    Google Scholar 

  5. J.K. Park, K. Steiglitz, W.P. Thurston, Soliton-like behavior in automata. Physica D 19, 423–432 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Vannozzi, D. Fiorentino, M. D’Amore et al., Cellular automata model of phase transition in binary mixtures. Ind. Eng. Chem. Res. 45(4), 2892–2896 (2006)

    Article  Google Scholar 

  7. M. Creutz, Celllular automata and self-organized criticality, ed. by G. Bannot, P. Seiden, Some New Directions in Science on Computers (World Scientific, Singapore), pp. 147–169

    Google Scholar 

  8. U. Frish, D. d’Humieres, B. Hasslacher et al., Lattice-gas hydrodynamics in two and three dimensions. Compl. Syst. 1, 649–707 (1987)

    Google Scholar 

  9. D.H. Rothman, S. Zalesky, Lattice-Gas Cellular Automata. Simple Model of Complex Hydrodynamics (Cambridge University Press, Cambridge, UK, 1997)

    Book  Google Scholar 

  10. S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, New York, NY, 2001)

    MATH  Google Scholar 

  11. L. Axner, A.G. Hoekstra, P.M.A. Sloot, Simulating time harmonic flows with the lattice Boltzmann method. Phys. Rev. E 75, 036709 (2007)

    Article  Google Scholar 

  12. V.I. Elokhin, E.I. Latkin, A.V. Matveev, V.V. Gorodetskii, Application of statistical lattice models to the analysis of oscillatory and autowave processes in the reaction of carbon monoxide oxidation over platinum and palladium surfaces. Kinet. Catal. 44(5), 672–700 (2003)

    Article  Google Scholar 

  13. A.P.J. Jansen, An Introduction to Monte-Carlo Simulation of Surface Reactions. ArXiv: cond-mat/0303028 v1 (2003)

    Google Scholar 

  14. I.G. Neizvestny, N.L. Shwartz, Z.Sh. Yanovitskaya, A.V. Zverev, 3D-model of epitaxial growth on porous 111 and 100 Si Surfacex. Comput. Phys. Commun. 147, 272–275 (2002)

    Article  MATH  Google Scholar 

  15. M.A. Saum, S. Gavrilets, CA simulation of biological evolution in genetic hyperspace, ed. by S. El Yacoubi, B. Chopard, S. Bandini, ACRI-2006. LNCS vol. 4176 (Springer, Berlin, 2006), pp. 3–13

    Google Scholar 

  16. Y. Wu, N. Chen, M. Rissler, Y. Jiang et al., CA models of myxobacteria sworming ed. by S. El Yacoubi, B. Chopard, S. Bandini, ACRI-2006, LNSC vol. 4176 (Springer, Berlin, 2006), pp. 192–203

    Google Scholar 

  17. M. Ghaemi, A. Shahrokhi, Combination of the cellular potts model and lattice gas cellular automata for simulating the avascular cancer growth, ed. by S. El Yacoubi, B. Chopard, S. Bandini, ACRI-2006, LNSC vol. 4176 (Springer, Berlin, 2006), pp. 297–303

    Google Scholar 

  18. R. Slimi, S. El Yacoubi, Spreadable probabilistic cellular automata models, ed. by S. El Yacoubi, B. Chopard, S. Bandini, ACRI-2006, LNSC vol. 4176 (Springer, Berlin, 2006), pp. 330–336

    Google Scholar 

  19. F. Biondini, F. Bontempi, D.M. Frangopol, P.G. Malerba, Cellular automata approach to durability analysis of concrete structures in aggressive environments. J. Struct. Eng. 130(11), 1724–1737

    Google Scholar 

  20. O. Bandman, Composing fine-grained parallel algorithms for spatial dynamics simulation, ed. by V. Malyshkin, PaCT-2005, LNCS Vol. 3606 (Springer, Berlin, 2005), pp. 99–113

    Google Scholar 

  21. S. Wolfram, Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)

    Article  MathSciNet  Google Scholar 

  22. L.O. Chua, CNN: A Paradigm for Complexity (World Scientific, Singapore, 2002)

    Google Scholar 

  23. L.R. Weimar, J.P. Boon, Class of cellular automata for reaction-diffusion systems. Phys Rev E 49, 1749–1752 (1994)

    Article  Google Scholar 

  24. O. Bandman, Simulating spatial dynamics by probabilistic cellular automata, ed. by S. Bandini, B. Chopard, M. Tomassini, ACRI-2002, LNCS vol. 2493 (Springer, Berlin, 2002), pp. 10–20

    Google Scholar 

  25. O. Bandman, Spatial functions approximation by boolean arrays. Bulletin of Novosibirsk Computer Center, series Computer Science 19. ICMMG, Novosibirsk:10–19 (2003)

    Google Scholar 

  26. S. Achasova, O. Bandman, V. Markova, S. Piskunov, Parallel Substitution Algorithm. Theory and Application (World Scientific, Singapore, 1994)

    Book  MATH  Google Scholar 

  27. S. Bandini, S. Manzoni, G. Vizzari, SCA: A model to simulate crowding dynamics. IEICE Trans. Inf. Syst. E87-D, 669–676 (2004)

    Google Scholar 

  28. A. Adamatsky, Dynamics of Crowd-Minds. in Series on Nonlinear Science, vol. 54 (World Scientific, Singapore, 2005)

    Google Scholar 

  29. O. Bandman, Coarse-grained parallelisation of cellular-automata simulation algorithms, ed. by V. Malyshkin, PaCT-2007 LNCS vol. 4671 (Springer, Berlin, 2007), pp. 370–384

    Google Scholar 

  30. G. Vichniac, Simulating physics by cellular automata. Physica D 10, 86–112 (1984)

    Article  MathSciNet  Google Scholar 

  31. Y. Svirezhev, Nonlinear Waves, Dissipative Structures and Catastrophes in Ecology (Nauka, Moscow, 1987)

    MATH  Google Scholar 

  32. R.M. Ziff, E. Gulari, Y. Barshad, Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett. 56, 2553 (1986)

    Article  Google Scholar 

  33. F. Schlogl, Chemical reaction models for non-equilibrium phase transitions. Z. Physik 253 147–161 (1972)

    Article  Google Scholar 

  34. C.P. Schrenk, P. Schutz, M. Bode, H.-G. Purwins, Interaction of selforganised quaziparticles in two-dimensional reaction diffusion system: the formation of molecules. Phys. Rev. E 5 (6), 6481–5486 (1918)

    Google Scholar 

  35. A.N. Michel, K. Wang, B. Hu, Qualitative Theory of Dynamics Systems: The Role of Stability Preserving. (CRC Press, New York, NY, 2001).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Bandman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bandman, O. (2010). Cellular Automata Composition Techniques for Spatial Dynamics Simulation. In: Kroc, J., Sloot, P., Hoekstra, A. (eds) Simulating Complex Systems by Cellular Automata. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12203-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12203-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12202-6

  • Online ISBN: 978-3-642-12203-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics