Skip to main content

An Algebraic Method for Eye Blink Artifacts Detection in Single Channel EEG Recordings

  • Conference paper
17th International Conference on Biomagnetism Advances in Biomagnetism – Biomag2010

Part of the book series: IFMBE Proceedings ((IFMBE,volume 28))

Abstract

Single channel EEG systems are very useful in EEG based applications where real time processing, low computational complexity and low cumbersomeness are critical constrains. These include brain-computer interface and biofeedback devices and also some clinical applications such as EEG recording on babies or Alzheimer’s disease recognition. In this paper we address the problem of eye blink artifacts detection in such systems. We study an algebraic approach based on numerical differentiation, which is recently introduced from operational calculus. The occurrence of an artifact is modeled as an irregularity which appears explicitly in the time (generalized) derivative of the EEG signal as a delay. Manipulating such delay is easy with the operational calculus and it leads to a simple joint detection and localization algorithm. While the algorithm is devised based on continuous-time arguments, the final implementation step is fully realized in a discrete-time context, using very classical discrete-time FIR filters. The proposed approach is compared with three other approaches: (1) the very basic threshold approach, (2) the approach that combines the use of median filter, matched filter and nonlinear energy operator (NEO) and (3) the wavelet based approach. Comparison is done on: (a) the artificially created signal where the eye activity is synthesized from real EEG recordings and (b) the real single channel EEG recordings from 32 different brain locations. Results are presented with Receiver Operating Characteristics curves. The results show that the proposed approach compares to the other approaches better or as good as, while having lower computational complexity with simple real time implementation. Comparison of the results on artificially created and real signal leads to conclusions that with detection techniques based on derivative estimation we are able to detect not only eye blink artifacts, but also any spike shaped artifact, even if it is very low in amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tiganj, Z., Mboup, M., Pouzat, C., Belkoura, L. (2010). An Algebraic Method for Eye Blink Artifacts Detection in Single Channel EEG Recordings. In: Supek, S., Sušac, A. (eds) 17th International Conference on Biomagnetism Advances in Biomagnetism – Biomag2010. IFMBE Proceedings, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12197-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12197-5_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12196-8

  • Online ISBN: 978-3-642-12197-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics