Skip to main content

Novel Drug Delivery Systems for Antifungal Compounds

  • Chapter
  • First Online:
Combating Fungal Infections

Abstract

Development of new approaches for treatment of invasive fungal infections encompasses new delivery systems for approved and investigational compounds. Novel delivery systems consisting of cyclodextrins (CDs), cochleates, nanoparticles, and long-circulating (“stealth”) liposomes modulate the pharmacokinetics of existing drugs, and may also be useful to enhance the delivery of antifungal agents to sites of infection. Among several promising new drug-delivery systems, liposomes represent an advanced technology for site-directed delivery of active molecules. Research on liposome technology has progressed from conventional vesicles (“first-generation liposomes”) to “second-generation liposomes,” in which long-circulating liposomes are obtained by modifying the surface of liposomes using several molecules, such as glycolipids, sialic acid, or synthetic polymer poly-(ethylene glycol) (PEG), resulting in prolonged reticulo-endothelial system uptake and serum half-life, thus increasing the therapeutic efficacy of drugs. At present, several formulations for amphotericin B are in clinical use for fungal infections in Europe and the United States. Nanoformulations have also been applied as drug delivery systems (DDSs), with great success. Finally, progress in the design of DDSs has led to the development of carriers targeted to specific tissues and cells. Efforts are now going on to improve their stability in the biological environment, to mediate the biodistribution of active compounds, and to improve drug loading, targeting, transport, release, and interaction with biological barriers. This chapter discusses the state of the art in the field of DDSs, used for control of systemic fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Salah KM (1996) Amphotericin B: an update. Br J Biomed Sci 53:122–133

    PubMed  CAS  Google Scholar 

  • Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355

    Article  PubMed  CAS  Google Scholar 

  • Adler-Moore JP, Proffitt R (2002) AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Ther 49(Suppl 1):21–30

    Article  CAS  Google Scholar 

  • Ahmad N, Alam MK, Shehbaz A, Khan A, Mannan A, Hakim SR, Bisht V, Owais M (2005) Antimicrobial activity of clove oil and its potential in the treatment of vaginal candidiasis. J Drug Target 13(10):555–561

    Article  PubMed  CAS  Google Scholar 

  • Alam M, Dwivedi V, Khan AA, Mohammad O (2009) Efficacy of niosomal formulation of diallyl sulfide against experimental candidiasis in Swiss albino mice. Nanomedicine 4(7):713–724

    Article  PubMed  CAS  Google Scholar 

  • Alexis F, Basto P, Levy-Nissenbaum E, Radovic-Moreno AF, Zhang LF, Pridgen E Wang AZ, Marein SL, Westerhof K, Molnar LK, Farokhzad OC (2008) Her-2-targeted nanoparticle–affibody bioconjugates for cancer therapy. Chem Med Chem 3:1839–1843

    PubMed  CAS  Google Scholar 

  • Aliabadi HM, Lavasanifar A (2006) Polymeric micelles for drug delivery. Expert Opin Drug Deliv 3(1):139–162

    Article  PubMed  CAS  Google Scholar 

  • Aliff TB, Maslak PG, Jurcic JG, Heaney ML, Cathcart KN, Sepkowitz KA, Weiss MA (2003) Refractory Aspergillus pneumonia in patients with acute leukemia: successful therapy with combination caspofungin and liposomal amphotericin. Cancer 97:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Allen C, Dos SN, Gallagher R, Chiu GNC, Shu Y, Li WM, Johnstone SA, Janoff AS, Mayer LD, Webb MS, Bally MB (2002) Controlling the physical behavior and biological performance of liposome formulations through use of surface grafted poly(ethylene glycol). Biosci Rep 22:225–250

    Article  PubMed  CAS  Google Scholar 

  • Allen TM (1998) Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs 56:747–756

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Chonn A (1987) Large unilamellar liposomes with low uptake by the reticuloendothelial system. FEBS Lett 223:42–46

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Hansen C (1991) Pharmacokinetics of stealth verses conventional liposomes: effect of dose. Biochim Biophys Acta 1068:133–141

    Article  PubMed  CAS  Google Scholar 

  • Allen PD, TM GA, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C et al (1991b) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A 88:11460–11464

    Article  PubMed  Google Scholar 

  • Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991a) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066:29–36

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Hansen C, Rutledge J (1989) Liposomes with prolonged circulation times: factors affecting uptake by reticuloendothelial and other tissues. Biochim Biophys Acta 981:27–35

    Article  PubMed  CAS  Google Scholar 

  • Allison AG, Gregoriadis G (1974) Liposomes as immunological adjuvants. Nature 252:252

    Article  PubMed  CAS  Google Scholar 

  • Angra PK, Oettinger C, Pai SB, D’Souza MJ (2009) Amphotericin B microspheres: a therapeutic approach to minimize toxicity while maintaining antifungal efficacy. J Microencapsul 26(7):580–587

    Article  PubMed  CAS  Google Scholar 

  • Arikan S, Rex JH (2001) Nystatin LF. Curr Opin Investig Drugs 2:488–495

    PubMed  CAS  Google Scholar 

  • Arunothayanun P, Bernard MS, Craig DQ, Uchegbu IF, Florence AT (2000) The effect of processing variables on the physical characteristics of non-ionic surfactant vesicles (niosomes) formed from a hexadecyl diglycerol ether. Int J Pharm 201:7–14

    Article  PubMed  CAS  Google Scholar 

  • Attia IA, El-Gizawy SA, Fouda MA, Donia AM (2007) Influence of a niosomal formulation on the oral bioavailability of acyclovir in rabbits. AAPS Pharm Sci Tech 8(4):E1–E7

    Article  Google Scholar 

  • Atwood JL, Davies JED, MacNicol DD, Vogtle F (eds) (1996) Comprehensive supramolecular chemistry, vol 3, Cyclodextrins. Pergamon, Oxford

    Google Scholar 

  • Awasthi VD, Garcia D, Klipper R, Goins BA, Phillips WT (2004) Neutral and anionic liposome-encapsulated hemoglobin: effect of postinserted poly(ethylene glycol)–distearoyl phosphatidyl ethanolamine on distribution and circulation kinetics. J Pharmacol Exp Ther 309:241–248

    Article  PubMed  CAS  Google Scholar 

  • Bae Y, Fukushima S, Harada A, Kataoka K (2003) Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed 42:4640–4643

    Article  CAS  Google Scholar 

  • Bakker-Woudenberg IA, Storm G, Woodle MC (1994) Liposomes in the treatment of infections. J Drug Target 2:363–371

    Article  PubMed  CAS  Google Scholar 

  • Balasubramaniam A, Kumar VA, Pillai KS (2002) Formulation and in vivo evaluation of niosome-encapsulated daunorubicin hydrochloride. Drug Dev Ind Pharm 28:1181–1193

    Article  PubMed  CAS  Google Scholar 

  • Bangham AD, Standish MM, Miller N (1965) Cation permeability of phospholipid model membranes: effect of narcotics. Nature 208:1295–1297

    Article  PubMed  CAS  Google Scholar 

  • Barone JA, Koh JG, Bierman RH et al (1993) Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male-volunteers. Antimicrob Agents Chemother 37(4):778–784

    Article  PubMed  CAS  Google Scholar 

  • Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, Bierman RH, Jessen L (1998) Enhanced bioavailability of itraconazole in hydroxypropyl-beta-cyclodextrin solution versus capsules in healthy volunteers. Antimicrob Agents Chemother 42:1862–1865

    PubMed  CAS  Google Scholar 

  • Barry BW (2001) Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci 14:101

    Article  PubMed  CAS  Google Scholar 

  • Batrakova EV, Dorodnych TY, Klinskii EY, Kliushnenkova EN, Shemchukova OB, Goncharova ON et al (1996) Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. Br J Cancer 74:1545–1552

    Article  PubMed  CAS  Google Scholar 

  • Batzri S, Korn ED (1973) Single bilayer liposomes prepared without sonication. Biochim Biophys Acta 289:1015–1019

    Google Scholar 

  • Belay T, Hospenthal DR, Rogers AL, Patterson MJ (1991) Evaluation of antibody-bearing liposomal amphotericin B in the treatment of systemic candidiasis in a neutropenic murine model. J Med Vet Mycol 29:419–421

    Article  PubMed  CAS  Google Scholar 

  • Beugin S, Edwards K, Karlsson G, Ollivon M, Lesieur S (1998) New sterically stabilized vesicles based on nonionic surfactant, cholesterol and poly(ethylene glycol)–cholesterol conjugates. Biophys J 74:3198–3210

    Article  PubMed  CAS  Google Scholar 

  • Bhaskaran S, Panigrahi L (2002) Formulation and evaluation of niosomes using different non-ionic surfactants. Indian J Pharm Sci 64(1):63–65

    CAS  Google Scholar 

  • Bilensoy E, Dogan AL, Sen M, Hincal AA (2007) Complexation behaviour of antiestrogen drug tamoxifen citrate with natural and modified cyclodextrins. J Inclusion Phenom Macrocyclic Chem 57:651–654

    Article  CAS  Google Scholar 

  • Bilensoy E, Hincal AA (2009) Recent advances and future directions in amphiphilic cyclodextrin nanoparticles. Expert Opin Drug Deliv 6(11):1161–1173

    Article  PubMed  CAS  Google Scholar 

  • Brajtburg J, Bolard J (1996) Carrier effects on biological activity of amphotericin B. Clin Microbiol Rev 9:512–531

    PubMed  CAS  Google Scholar 

  • Brannon-Peppas L, Blanchette JO (2004) Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 56(11):1649–1659

    Article  PubMed  CAS  Google Scholar 

  • Buchanan CM, Buchanan NL, Edgar KJ et al (2007) Pharmacokinetics of itraconazole after intravenous and oral dosing of itraconazole–cyclodextrin formulations. J Pharm Sci 96(11):3100–3116

    Article  PubMed  CAS  Google Scholar 

  • Campbell PI (1983) Toxicity of some charged lipids used in liposome preparation. Cytobios 37:21–26

    PubMed  CAS  Google Scholar 

  • Carafa M, Santucci E, Alhaique F, Coviello T, Murtas E, Riccieri FM, Lucania G, Torrisi MR (1998) Preparation and properties of new unilamellar non-ionic surfactant vesicles. Int J Pharm 160:51–59

    Article  CAS  Google Scholar 

  • Chaize B, Colletier JP, Winterhalter M, Fournier D (2004) Encapsulation of enzymes in liposomes: high encapsulation efficiency and control of substrate permeability. Artif Cells Blood Substit Immobil Biotechnol 32:67–75

    Article  PubMed  CAS  Google Scholar 

  • Chan OH, Stewart BH (1996) Physicochemical and drug-delivery considerations for oral drug bioavailability. Drug Discov Today 1(11):461–473

    Article  CAS  Google Scholar 

  • Chen AZ, Kang YQ, Pu XM, Yin GF, Li Y, Hu JY (2009) Development of Fe3O4-poly(llactide) magnetic microparticles in supercritical CO2. J Colloid Interface Sci 330:317–322

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Choi LS, Einstein S, Klippenstein MA, Scherrer P, Cullis PR (1999) Proton-induced permeability and fusion of large unilamellar vesicles by covalently conjugated poly(2-ethylacrylic acid). J Liposome Res 9:387–405

    Article  CAS  Google Scholar 

  • Choi KC, Bang JY, Kim PI, Kim C, Song CE (2008) Amphotericin B-incorporated polymeric micelles composed of poly(d,l-lactide-co-glycolide)/dextran graft copolymer. Int J Pharm 355(1–2):224–230

    Article  PubMed  CAS  Google Scholar 

  • Choi MJ, Maibach HI (2005) Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol Physiol 18:209–219

    Article  PubMed  CAS  Google Scholar 

  • Chu CJ, Dijkstra J, Lai MZ, Hong K, Szoka FC (1990) Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture. Pharmacol Res 7:824–834

    Article  CAS  Google Scholar 

  • Clemons KV, Espiritu M, Parmar R, Stevens DA (2005) Comparative efficacies of conventional amphotericin B, liposomal amphotericin B (AmBisome), caspofungin, micafungin, and voriconazole alone and in combination against experimental murine central nervous system aspergillosis. Antimicrob Agents Chemother 49:4867–4875

    Article  PubMed  CAS  Google Scholar 

  • Collins D (1995) pH-Sensitive liposomes as tools for cytoplasmic delivery. In: Philippot JR, Schuber F (eds) Liposomes as tools in basic research and industry. CRC, Boca Raton, FL, pp 201–214

    Google Scholar 

  • Cornely O (2005) Ambiload. Am Soc Hematol 55:727–734

    Google Scholar 

  • Davis SS (1997) Biomedical applications of nanotechnology — implications for drug targeting and gene therapy. Trends Biotechnol 15:217–224

    Article  PubMed  CAS  Google Scholar 

  • de Beule K, Van Gestel J (2001) Pharmacology of itraconazole. Drugs 61(Suppl 1):27–33

    Article  PubMed  Google Scholar 

  • de Gennes PG (1980) Conformations of polymers attached to an interface. Macromolecules 13:1069–1075

    Article  Google Scholar 

  • Delmas G, Park S, Chen ZW, Tan F, Kashiwazaki R, Zarif L, Perlin DS (2002) Efficacy of orally delivered cochleates containing amphotericin B in a murine model of aspergillosis. Antimicrob Agents Chemother 46(8):2704–2707

    Article  PubMed  CAS  Google Scholar 

  • Des Rieux A, Fievez V, Garinot M, Schneider YJ, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116(1):1–27

    Article  PubMed  CAS  Google Scholar 

  • Desai SK, Naik SR (2008a) Probable mechanism(s) of antifungal activity of SJA-95, a heptaene polyene antibiotic. Indian J Pharm Sci 70(2):165–169

    Article  PubMed  CAS  Google Scholar 

  • Desai SK, Naik SR (2008b) Preparation, relative toxicity, chemotherapeutic activity, and pharmacokinetics of liposomal SJA-95: a new polyene macrolide antibiotic. J Liposome Res 18:279–292

    Article  PubMed  CAS  Google Scholar 

  • Drew R (2006) Potential role of aerosolized amphotericin B formulations in the prevention and adjunctive treatment of invasive fungal infections. Int J Antimicrob Agents 27S:S36–S44

    Article  CAS  Google Scholar 

  • Dromer F, Barbet J, Bolard J, Charreire J, Yeni P (1990) Improvement of amphotericin B activity during experimental cryptococcosis by incorporation into specific immunoliposomes. Antimicrob Agents Chemother 34:2055–2060

    Article  PubMed  CAS  Google Scholar 

  • Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D (1999) Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev 51:691–743

    PubMed  CAS  Google Scholar 

  • Drummond DC, Zignani M, Leroux J-C (2000) Current status of pH-sensitive liposomes in drug delivery. Prog Lipid Res 39:409–460

    Article  PubMed  CAS  Google Scholar 

  • Dufresne MH, Fournier E, Jones M-C, Ranger M, Leroux JC (2003) Block copolymer micelles–engineering versatile carriers for drugs and biomacromolecules. In: Gurny R (ed) Challenge in drug delivery for the new millennium Gattefosse Bulletin Technique, vol 96. Gattefosse, Saint-Priest, France, pp 87–102

    Google Scholar 

  • Echegoyen LE, Hernandaz JC, Kaifer AE, Gokel GW, Echegoyen L (1988) J Chem Soc Chem Commun 12:836

    Article  Google Scholar 

  • Edwards JE Jr, Filler SG (1992) Current strategies for treating invasive candidiasis: emphasis on infections in nonneutropenic patients. Clin Infect Dis 14(suppl 1):S106–S113

    Article  PubMed  Google Scholar 

  • Elder EJ, Hitt JE, Rogers TL et al (2006) Particle engineering of poorly water soluble drugs by controlled precipitation. ACS Symp Ser 924:292–304

    Article  CAS  Google Scholar 

  • Elizabeth MJ, Joshua OO, Szekely A, Wallace TL, David WW (1998) Comparison of in vitro antifungal activities of free and liposome-encapsulated nystatin with those of four Amphotericin b formulations. Antimicrob Agents Chemother 42(6):1412–1416

    Google Scholar 

  • Fessi HC, Devissaguet JP, Puisieux F, Thies C (1997) Process for the preparation of dispersible colloidal systems of a substance in the form of nanoparticles. US Patent 5118528

    Google Scholar 

  • Florence AT, Baillie AJ (1989) Non-ionic surfactant vesicles, alternatives to liposomes in drug delivery? In: Prescott LF, Nimmo WS (eds) Novel drug delivery and its therapeutic application. Wiley, New York, pp 281–296

    Google Scholar 

  • Fukui H, Koike T, Saheki A, Sonoke S, Yoshikawa H, Sasaki H, Tomii Y, Seki J (1996) A novel antifungal drug delivery system: lipid nano-sphere incorporating amphotericin B (LNS-AmB). Proceedings of the 23rd International Symposium on Controlled Release of Bioactive Materials, Kyoto, Japan, p 655. Abstr. 5026

    Google Scholar 

  • Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 85:6949–6953

    Google Scholar 

  • Gayatri Devi S, Venkatesh P, Udupa N (2000) Niosomal sumatriptan succinate for nasal administration. Int J Pharm Sci 62:479–481

    Google Scholar 

  • Gianasi E, Cociancich F, Uchegbu IF, Florence AT, Duncan FR (1997) Pharmaceutical and biological characterization of a doxorubicin-polymer conjugate (PK1) entrapped in sorbitan monostearate Span 60 niosomes. Int J Pharm 148:139–148

    Article  CAS  Google Scholar 

  • Graybill JR, Najvar L, Bocanegra R, Scolpino A, Mannino RJ, Zarif L (1999) A new lipid vehicle for amphotericin B. In: Abstract 39th ICAAC, San Francisco, 26–29 September, p 583

    Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G (1977) Targeting of drugs. Nature 265:407–411

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G (1995) Engineering liposomes for drug delivery: progress and problems. Trends Biotechnol 13:527–537

    Google Scholar 

  • Gregoriadis G, Florence AT (1993) Liposomes in drug delivery: clinical, diagnostic and ophthalmic potential. Drugs 45:15–28

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G, Neerunjun ED (1975) Homing of liposomes to target cells. Biochem Biophys Res Commun 65:537–544

    Article  PubMed  CAS  Google Scholar 

  • Grislain L, Couvreur P, Lenaerts V, Roland M, Depreg-Decampeneere D, Speiser P (1983) Pharmakokinetics and distribution of a biodegradable drug-carrier. Int J Pharmacol 15:335–338

    Article  CAS  Google Scholar 

  • Groll AH, Piscitelli SC, Walsh TJ (1998) Clinical pharmacology of systemic antifungal agents. Adv Pharmacol 44:343–500

    Article  PubMed  CAS  Google Scholar 

  • Gude RP, Jadhav MG, Rao SG, Jagtap AG (2002) Effects of niosomal cisplatin and combination of the same with theophylline and with activated macrophages in murine B16F10 melanoma model. Cancer Biother Radiopharm 17:183–192

    Article  PubMed  CAS  Google Scholar 

  • Guo J, Ping Q, Jiang G, Huang L, Tong Y (2003) Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm 260:167–173

    Article  PubMed  CAS  Google Scholar 

  • Handjani-vila RM, Ribier A, Rondot B, Vanlerberghe G (1979) Dispersions of lamellar phases of non-ionic lipids in cosmetic products. Int J Cosmet Sci 1:303–314

    Article  PubMed  CAS  Google Scholar 

  • Hao H, Liang GZ (2002) Polymer nanoparticle applicated in drug delivery systems. Ion Exch Adsorption 18:380–384

    Google Scholar 

  • Harrington KJ, Syrigos KN, Vile RG (2002) Liposomally-targeted cytotoxic drugs in the treatment of cancer. J Pharm Pharmacol 54:1573–1600

    Article  PubMed  CAS  Google Scholar 

  • Hay RJ (1994) Liposomal amphotericin B, AmBisome. J Infect 28:35–43

    Article  PubMed  Google Scholar 

  • He W, Yang JX, Yang J, Yin WH (1998) The research on liver targeting delivery system of cantharidin polyphase liposome modified by strengthened targeting material. J China Pharm Univ 20:413–417

    CAS  Google Scholar 

  • Henriksen I, Vagen SR, Sande SA, Smitad G, Karlsen J (1997) Interactions between liposomes and chitosan II: effect of selected parameters on aggregation and leakage. Int J Pharm 146:193–204

    Article  CAS  Google Scholar 

  • Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, Kern WV, Marr KA, Ribaud P et al (2002) Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347:408–415

    Article  PubMed  CAS  Google Scholar 

  • Hiemenz JW, Cagnoni P, Tong K (1998). A cost-effectiveness study comparing ambisome versus amphotericin B deoxycholate in the empirical treatment of persistently febrile neutropenic patients. Focus on Fungal Infections 8, Orlando (Abstract)

    Google Scholar 

  • Hiroshi F, Tomohiro K, Takashi N, Akira S, Satoru S, Yoshifumi T, Junzo S (2003) Comparison of LNS-AmB, a novel low-dose formulation of amphotericin B with lipid nano-sphere (LNS®), with commercial lipid-based formulations. Int J Pharm 267:101–112

    Article  CAS  Google Scholar 

  • Hope MJ, Mui B, Ansell S, Ahkong QF (1998) Cationic lipids, phosphatidyl-ethanolamine and the intracellular delivery of polymeric, nucleic acid based drugs. Mol Membr Biol 15:1–14

    Article  PubMed  CAS  Google Scholar 

  • Hossain MA, Maesaki S, Kakeya H, Noda T, Yanagihara K, Sasaki E, Hirakata Y, Tomono K, Tashiro T, Kohno S (1998) Efficacy of NS-718, a novel lipid nanosphere-encapsulated amphotericin B against Cryptococcus neoformans. Antimicrob Agents Chemother 42:1722–1725

    PubMed  CAS  Google Scholar 

  • Hostetler JS, Hanson LH, Stevens DA (1992) Effect of cyclodextrin on the pharmacology of antifungal oral azoles. Antimicrob Agents Chemother 36(2):477–480

    Article  PubMed  CAS  Google Scholar 

  • Hunter CA, Dolan TF, Coombs GH, Baillie AJ (1988) Vesicular systems (niosomes and liposomes) for delivery of sodium stibogluconate in experimental murine visceral leishmaniasis. J Pharm Pharmacol 40(3):161–165

    Article  PubMed  CAS  Google Scholar 

  • Irie T, Uekama K (1997) Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci 86:147–162

    Article  PubMed  CAS  Google Scholar 

  • Ishida T, Harashima H, Kiwada H (2002) Liposome clearance. Biosci Rep 22:197–224

    Article  PubMed  CAS  Google Scholar 

  • Italia JL, Yahya MM, Singh D, Ravi Kumar MN (2009) Biodegradable nanoparticles improve oral bioavailability of Amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone®. Pharm Res 26:1324–1331. doi: 10.1007/s11095-009-9841-2

    Google Scholar 

  • Jain CP, Vyas SP (1995) Preparation and characterization of niosomes containing rifampicin for lung targeting. J Microencapsul 12(4):401–407

    Article  PubMed  CAS  Google Scholar 

  • Jain S, Singh P, Mishra V, Vyas SP (2005) Mannosylated niosomes as adjuvant-carrier system for oral genetic immunization against Hepatitis B. Immunol Lett 101:41–49

    Article  PubMed  CAS  Google Scholar 

  • Jeong YI, Cheon JB, Kim SH, Nah JW, Lee YM, Sung YK, Akaike T, Cho CS (1998) Clonazepam release from core-shell type nanoparticles in vitro. J Control Release 51:169–178

    Article  PubMed  CAS  Google Scholar 

  • Juliano RL, Lopez-Berestein G (1985) New lives for old drugs — liposomal drug delivery systems reduce the toxicity but not the potency of certain chemotherapeutic agents. Pharm Int 45:15–28

    Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    Article  PubMed  CAS  Google Scholar 

  • Kataoka K, Kwon GS, Yokohama M, Okano T, Sakurai Y (1993) Block copolymer micelles as vehicles for drug delivery. J Control Release 24:119–132

    Article  CAS  Google Scholar 

  • Katti DS, Lakshmi S, Langer R, Laurencin CT (2002) Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev 54:933–961

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Ahmad N, Moin S, Mannan A, Wajahul H, Pasha ST, Khan A, Owais M (2005a) Tuftsin-mediated immunoprophylaxis against an isolate of Aspergillus fumigatus shows less in vivo susceptibility to amphotericin B. FEMS Immunol Med Microbiol 44(3):269–276

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Faisal SM, Mohammad O (2006) Safety, efficacy and pharmacokinetics of tuftsin-loaded nystatin liposomes in murine model. J Drug Target 14(4):233–241

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Jabeen R, Mohammad O (2004a) Prophylactic role of liposomized chloroquine against murine cryptococcosis less susceptible to fluconazole. Pharm Res 21(12):2207–2212

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Jabeen R, Nasti TH, Mohammad O (2005b) Enhanced anticryptococcal activity of chloroquine in phosphatidylserine-containing liposomes in a murine model. J Antimicrob Chemother 55(2):223–228

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Nasti TH, Saima K, Mallick AI, Firoz A, Wajahul H, Ahmad N, Mohammad O (2004b) Co-administration of immunomodulator tuftsin and liposomised nystatin can combat less susceptible Candida albicans infection in temporarily neutropenic mice. FEMS Immunol Med Microbiol 41(3):249–258

    Article  PubMed  CAS  Google Scholar 

  • Khan MA, Owais M (2005) Immunomodulator tuftsin increases the susceptibility of Cryptococcus neoformans to liposomal amphotericin B in immunocompetent BALB/c mice. J Drug Target 13(7):423–429

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi H, Yamauchi H, Hirota S (1994) A polyol dilution method for mass production of liposome. J Liposome Res 4:71–91

    Article  CAS  Google Scholar 

  • Kim Y, Oksanen DA, Massefski W, Blake JF, Duffy EM, Chrunyk B (1998) Inclusion complexation of ziprasidone mesylate with β-cyclodextrin sulfobutyl ether. J Pharm Sci 87:1560–1567

    Article  PubMed  CAS  Google Scholar 

  • Kirkpatrick WR, Coco BJ, Patterson TF (2006) Sequential or combination antifungal therapy with voriconazole and liposomal amphotericin B in a guinea pig model of invasive aspergillosis. Antimicrob Agents Chemother 50:1567–1569

    Article  PubMed  CAS  Google Scholar 

  • Kirpotin D, Hong KL, Mullah N, Papahadopoulos D, Zalipsky S (1996) Liposomes with detachable polymer coating. Destabilization and fusion of dioleoylphosphatidyl ethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett 388:115–118

    Article  PubMed  CAS  Google Scholar 

  • Kohno S, Otsubo T, Hara K, Tomii Y, Seki J (1995) A new antifungal drug delivery system, lipid nano-sphere encapsulated amphotericin B (LNSAmB), its evaluation in the rat model of invasive pulmonary aspergillosis. In: Program and Abstracts of the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy. American Society for Microbiology, Washington, DC, p 131. Abstr. F109

    Google Scholar 

  • Kohno S, Otsubo T, Tanakab E, Maruyama K, Hara K (1997) Amphotericin B encapsulated in polyethylene glycol-immunoliposomes for infectious diseases. Adv Drug Deliv Rev 24:325–329

    Article  CAS  Google Scholar 

  • Koning GA, Kamps JA, Scherphof GL (2002) Efficient intracellular delivery of 5-fluoro-deoxyuridine into colon cancer cells by targeted immunoliposomes. Cancer Detect Prev 26:299–307

    Article  PubMed  CAS  Google Scholar 

  • Kono K, Zenitani KI, Takagishi T (1994) Novel pH-sensitive liposomes: liposomes bearing a poly(ethylene glycol) derivative with carboxyl groups. Biochim Biophys Acta 1193:1–9

    Google Scholar 

  • Kontoyiannis DP, Hachem R, Lewis RE, Rivero GA, Torres HA, Thornby J, Champlin R, Kantarjian H, Bodey GP, Raad II (2003) Efficacy and toxicity of caspofungin in combination with liposomal amphotericin B as primary or salvage treatment of invasive aspergillosis in patients with hematologic malignancies. Cancer 98:292–299

    Article  PubMed  CAS  Google Scholar 

  • Kreuter J (1996) Nanoparticles and microparticles for drug and vaccine delivery. J Anat 189:503–505

    Google Scholar 

  • Kwon GS (2002) Block copolymer micelles as drug delivery systems. Adv Drug Deliv Rev 54:167–252

    Article  CAS  Google Scholar 

  • Kwon GS, Okano T (1996) Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 21:107–116

    Article  CAS  Google Scholar 

  • La SB, Okano T, Kataoka K (1996) Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles. J Pharm Sci 85:85–90

    Article  PubMed  CAS  Google Scholar 

  • Lasic DD (1993) Liposomes: from physics to applications. Elsevier, Amsterdam

    Google Scholar 

  • Lasic DD, Martin FJ (eds) (1995) Stealth liposomes. CRC, Boca Raton, FL

    Google Scholar 

  • Lavasanifar A, Samuel J, Sattari S, Glen SK (2002) Block copolymer micelles for the encapsulation and delivery of Amphotericin B. Pharm Res 19(4):418–422

    Article  PubMed  CAS  Google Scholar 

  • Laverman P, Carstens MG, Boerman OC, Dams ET, Oyen WJ, van Rooijen N, Corstens FH, Storm G (2001) Factors affecting the accelerated blood clearance of polyethylene glycol liposomes upon repeated injection. J Pharmacol Exp Ther 298:607–612

    PubMed  CAS  Google Scholar 

  • Leenders AC, Daenen S, Jansen RL, Hop WC, Lowenberg B, Wijermans PW, Cornelissen J, Herbrecht R, van der Lelie H, Hoogsteden HC, Verbrugh HA, de Marie S (1998) Liposomal amphotericin B compared with amphotericin B deoxycholate in the treatment of documented and suspected neutropenia-associated invasive fungal infections. Br J Haematol 103:205–212

    Article  PubMed  CAS  Google Scholar 

  • Leenders ACAP, Reiss P, Portegies P, Clezy K, Hop WCJ, Borleffs HJ, JCC AT, Kauffmann RH, Jones P, Kroon FP, Verbrugh HA, de Marie S (1997) Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated cryptococcal meningitis. AIDS 11:1463–1471

    Article  PubMed  CAS  Google Scholar 

  • Lemos-Senna E (1998) Contribution a l’étude pharmacotechnique et physico-chimique de nanosphères de cyclodextrins amphiphiles comme transporteurs de principes actifs. PhD thesis, Université Paris-Sud

    Google Scholar 

  • Lemos-Senna E, Wouessidjewe D, Lesieur S, Duchene D (1998a) Preparation of amphiphilic cyclodextrin nanospheres using the emulsion solvent evaporation method, influence of the surfactant on preparation and hydrophobic drug loading. Int J Pharm 170:119–128

    Article  CAS  Google Scholar 

  • Lemos-Senna E, Wouessidjewe D, Lesieur S, Puisieux F, Couarrazze G, Duchene D (1998b) Evaluation of the hydrophobic drug loading characteristics in nanoprecipitated amphiphilic cyclodextrins nanospheres. Pharm Dev Technol 3:1–10

    Article  Google Scholar 

  • Li C (2002) Poly(L-glutamic acid)-anticancer drug conjugates. Adv Drug Deliv Rev 54:695–713

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Mori A, Huang L (1992) Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta 1104:95–101

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Zhou F, Huang L (1989) Characterization of plasma-stabilized liposomes composed of dioleoylphosphatidylethanolamine and oleic acid. Biochem Biophys Res Commun 162:326–333

    Article  PubMed  CAS  Google Scholar 

  • Liu TQ, Guo R (2005) Preparation of a highly stable niosome and its hydrotrope-solubilization action to drugs. Langmuir 21:11034–11039

    Article  PubMed  CAS  Google Scholar 

  • Loftsson T, Duchene D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329(1–2):1–11

    Article  PubMed  CAS  Google Scholar 

  • Mady MM, Ghannam MM, Khalil WA, Repp R, Markus M, Rascher W, Muller R, Fahr A (2004) Efficient gene delivery with serum into human cancer cells using targeted anionic liposomes. J Drug Target 12:11–18

    Article  PubMed  CAS  Google Scholar 

  • Maesaki S, Hossain MA, Sasaki E, Hashiguchi K, Higashiyama Y, Yoshitsugu Y, Tomono K, Tashiro T, Kohno S (1999a) The future of antifungal agents. Non azole antifungal agents. Nippon Ishinkin Gakkai Zasshi 40(3):157–161

    Article  CAS  Google Scholar 

  • Maesaki S, Miyazaki Y, Higashiyama Y, Tomono K, Kohno S (1999b) The efficacy and attenuation of nephrotoxicity of NS-718, a novel lipid nanosphere encapsulated amphotericin B against Cryptococcus neoformans infection. In: Abstracts of the 39th International Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 26–29 September 1999; Washington, DC, American Society for Microbiology, Abstract 2013

    Google Scholar 

  • Manconi M, Sinico C, Valenti D, Loy G, Fadda AM (2002) Niosomes as carriers for tretinoin I. Preparation and properties. Int J Pharm 234:237–248

    Article  PubMed  CAS  Google Scholar 

  • Mannino RJ, Gould-Fogerite S (1997) Antigen cochleate formulations for oral and systemic vaccination. In: Levine MM (ed) New generation vaccines, 2nd edn. Marcel Dekker, New York, pp 229–239

    Google Scholar 

  • Marine M, Espada R, Torradob J, Pastora FJ, Guarroa J (2009) Efficacy of a new formulation of amphotericin B in murine disseminated infections by Candida glabrata or Candida tropicalis. Int J Antimicrob Agents 34:566–569

    Article  PubMed  CAS  Google Scholar 

  • Maroof A, Farazuddin M, Owais M (2009) Potential of liposomal diallyl sulphide in treatment of experimental murine candidiasis. Biosci Rep Jul 31 [Epub ahead of print]

    Google Scholar 

  • Marr KA, Boeckh M, Carter RA et al (2004) Combination antifungal therapy for invasive aspergillosis. Clin Infect Dis 39:797–802

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Okuizumi S, Ishida O, Yamauchi H, Kikuchi H, Iwatsuru M (1994) Phosphatidyl polyglycerols prolong liposome circulation in vivo. Int J Pharm 111:103–107

    Article  CAS  Google Scholar 

  • Maruyama K, Takizawa T, Yuda T, Kennel SJ, Huang L, Iwatsuru M (1995) Targetability of novel immunoliposomes modified with amphipathic poly(ethylene glycols) conjugated at their distal terminal to monoclonal antibodies. Biochim Biophys Acta 1234:74–80

    Article  PubMed  Google Scholar 

  • Maruyama K, Yuda T, Okamoto A, Kojima S, Suginaka A and Iwatsuru M (1992) Prolonged circulation time in vivo of large unilamellar liposomes composed of distearoyl phosphatidylcholine and cholesterol containing amphipathic poly(ethylene glycol). Biochim Biophys Acta 1128:44–49

    Google Scholar 

  • Matteucci ML, Thrall DE (2000) The role of liposomes in drug delivery and diagnostic imaging: a review. Vet Radiol Ultrasound 41:100–107

    Article  PubMed  CAS  Google Scholar 

  • Maurer N, Fenske DB, Cullis PR (2001) Developments in liposomal drug delivery systems. Expert Opin Biol Ther 1(6):923–947

    Article  PubMed  CAS  Google Scholar 

  • Medina OP, Zhu Y, Kairemo K (2004) Targeted liposomal drug delivery in cancer. Curr Pharm Des 10:2981–2989

    Article  PubMed  CAS  Google Scholar 

  • Memisoglu-Bilensoy E, Bochot A, Trichard L et al (2005) Amphiphilic cyclodextrins and microencapsulation. In: Benita S (ed) Microencapsulation second and revised edition. Taylor & Francis, New York, pp 269–295

    Google Scholar 

  • Meunier F, Prentice HG, Ringden O (1991) Liposomal amphotericin B (Ambisome): safety data from a phase II: III clinical trial. J Antimicrob Chemother 28B:83–91

    Article  Google Scholar 

  • Mills W, Chopra R, Linch DC, Goldstone AH (1994) Liposomal amphotericin B in the treatment of fungal infections in neutropenic patients: a single centre experience of 133 episodes in 116 patients. Br J Haematol 86:754–760

    Article  PubMed  CAS  Google Scholar 

  • Miron L, Mares M, Nastasa V, Spulber M, Fifere A, Pinteala M, Harabagiu V, Simionescu BC (2009) Water soluble sulconazole-b-cyclodextrin complex: physico-chemical characterization and preliminary pharmacological studies. J Incl Phenom Macrocycl Chem 63:159–162

    Article  CAS  Google Scholar 

  • Mizushima Y, Hamano T, Yokoyama K (1982) Use of a lipid emulsion as a novel carrier for corticosteroids. J Pharm Pharmacol 34:49–53

    Article  PubMed  CAS  Google Scholar 

  • Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42:463–478

    Article  PubMed  CAS  Google Scholar 

  • Mora M, Sagrista ML, Trombetta D, Bonina FP, de Pasquale A, Saija A (2002) Design and characterization of liposomes containing long-chain N-acylPEs for brain delivery: penetration of liposomes incorporating GM1 into the rat brain. Pharm Res 19:1430–1438

    Article  PubMed  CAS  Google Scholar 

  • Moribe K, Maruyama K (2002) Pharmaceutical design of the liposomal antimicrobial agents for infectious disease. Curr Pharm Des 8:441–454

    Article  PubMed  CAS  Google Scholar 

  • Moses MA, Brem H, Langer R (2003) Advancing the field of drug delivery: taking aim at cancer. Cancer Cell 4:337–341

    Article  PubMed  CAS  Google Scholar 

  • Mozafari MR, Reed CJ, Rostron C (2007) Cytotoxicity evaluation of anionic nanoliposomes and nanolipoplexes prepared by the heating method without employing volatile solvents and detergents. Die Pharmazie 62:205–209

    PubMed  CAS  Google Scholar 

  • Muzzalupo R, Ranieri GA, La Mesa C (1996) Translational diffusion and other physicochemical properties of a bolaform surfactant in solution. Langmuir 12:3157–3161

    Article  CAS  Google Scholar 

  • Muzzalupo R, Trombino S, Iemma F, Puoci F, La Mesa C, Picci N (2005) Preparation and characterization of bolaform surfactant vesicles. Colloid Surf B Biointerfaces 46:78–83

    Article  CAS  Google Scholar 

  • Nahar M, Mishra D, Dubey V, Jain NK (2008) Development, characterization, and toxicity evaluation of amphotericin B–loaded gelatin nanoparticles. Nanomedicine: NBM 4:252–261. doi:10.1016/j.nano.2008.03.007

    Article  CAS  Google Scholar 

  • Naik SR, Desai SK, Nanda RK, Narayanan MS (2007) Fermentation, isolation, purification, and biological activity of SJA-95, a heptaene polyene macrolide antibiotic produced by Streptomyces sp. strain S-24. Arzneim Forsch (Drug Res) 57(3):171–179

    CAS  Google Scholar 

  • Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M, Okano T, Sakurai Y, Kataoka K (2001) Development of the polymer micelle carrier system for doxorubicin. J Control Release 74:295–302

    Article  PubMed  CAS  Google Scholar 

  • Namdeo A, Jain NK (1996) Niosomes as drug carriers. Indian J Pharm Sci 58(2):41–46

    CAS  Google Scholar 

  • Nasti TH, Khan MA, Owais M (2006) Enhanced efficacy of pH-sensitive nystatin liposomes against Cryptococcus neoformans in murine model. J Antimicrob Chemother 57:349–352

    Article  PubMed  CAS  Google Scholar 

  • Ng TTC, Denning DW (1995) Liposomal amphotericin B (AmBi-some) therapy in invasive fungal infections. Evaluation of United Kingdom compassionate use data. Arch Intern Med 155:1093–1098

    Article  PubMed  CAS  Google Scholar 

  • Ning MY, Guo YZ, Pan HZ et al (2005) Preparation, in vitro and in vivo evaluation of liposomal/niosomal gel delivery systems for clotrimazole. Drug Dev Ind Pharm 31(4–5):375–383

    PubMed  CAS  Google Scholar 

  • Oku N, Namba Y (1994) Long-circulating liposomes. Crit Rev Ther Drug Carrier Syst 11(4):231–270

    Google Scholar 

  • Oku N, Namba Y (2005) Glucuronate-modified, long-circulating liposomes for the delivery of anticancer agents. Methods Enzymol 391:145–162

    Article  PubMed  CAS  Google Scholar 

  • Olson JA, Adler-Moore JP, Smith PJ, Proffitt RT (2005) Treatment of Candida glabrata infection in immunosuppressed mice by using a combination of liposomal amphotericin B with caspofungin or micafungin. Antimicrob Agents Chemother 49:4895–4902

    Article  PubMed  CAS  Google Scholar 

  • Otsubo T, Maesaki S, Hossain MA, Yamamoto Y, Tomono K, Tshiro T, Seki J, Tomi Y, Sonoke S, Kohno S (1999) In vitro and in vitro activities of NS-718, a new lipid nanosphere incorporating amphotericin B, against Aspergillus fumigatus. Antimicrob Agents Chemother 43:471–475

    PubMed  CAS  Google Scholar 

  • Otsubo T, Maruyama K, Maesaki S, Miyazaki Y, Tanaka E, Takizawa T, Moribe K, Tomono K, Tashiro T, Kohno S (1998) Long-circulating immunoliposomal amphotericin B against invasive pulmonary aspergillosis in mice. Antimicrob Agents Chemother 42:40–44

    PubMed  CAS  Google Scholar 

  • Overhoff KA, Engstrom JD, Chen B, Scherzer BD, Milner TE, Johnston KP, Williams RO (2007) Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs. Eur J Pharm Biopharm 65(1):57–67

    Article  PubMed  CAS  Google Scholar 

  • Packhaeuser CB, Schnieders J, Oster CG, Kissel T (2004) In situ forming parenteral drug delivery systems: an overview. Eur J Pharma Biopharm 58:445–455

    Article  CAS  Google Scholar 

  • Pandey R, Ahmad Z, Sharma S, Khuller GK (2005) Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int J Pharm 14:268–276

    Article  CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Vail WJ, Jacobson K, Poste G (1975) Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles. Biochim Biophys Acta 394:483–491

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee KD, Woodle MC, Lasic DD, Redemann C et al. (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88:11460–11464

    Google Scholar 

  • Pedersen M (1994) Isolation and antimycotic effect of a genuine miconazole beta-cyclodextrin complex. Eur J Pharm Biopharm 40(1):19–23

    CAS  Google Scholar 

  • Peeters J, Neeskens P, Tollenaere JP, van Remoortere P, Brewster ME (2002) Characterization of the interaction of 2-hydroxypropyl-β-cyclodextrin with itraconazole at pH 2, 4 and 7. J Pharm Sci 91:1414–1422

    Article  PubMed  CAS  Google Scholar 

  • Peng H-S, Liu X-J, LV Gui-xiang, Sun B, Kong Q-F, Zhai D-X, Wang Q, Zhao W, Wang G-Y, Wang D-D, Li H-L, Jin L-H, Kostulas N (2008) Voriconazole into PLGA nanoparticles: improving agglomeration and antifungal efficacy. Int J Pharm 352:29–35

    Article  PubMed  CAS  Google Scholar 

  • Perfect JR, Dodds Ashley E, Drew R (2004) Design of aerosolized Amphotericin B formulations for prophylaxis trials among lung transplant recipients. Clin Infect Dis 39(Suppl 4):S207–S210

    Article  PubMed  CAS  Google Scholar 

  • Perugini P, Genta I, Pavanetto F, Conti B, Scalia S, Baruffini A (2000) Study on glycolic acid delivery by liposomes and microspheres. Int J Pharm 196:51–61

    Article  PubMed  CAS  Google Scholar 

  • Pierard GE, Arrese JE, Quatresooz P et al (2007) Emerging therapeutic agents for onychomycosis. Expert Opin Emerg Drugs 12(3):345–353

    Article  PubMed  CAS  Google Scholar 

  • Pinto RC, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug loaded polymeric nanoparticles. Nanomedicine 2(1):8–21

    Article  CAS  Google Scholar 

  • Poirier JM, Cheymol G (1998) Optimisation of itraconazole therapy using target drug concentrations. Clin Pharmacokinet 35(6):461–473

    Article  PubMed  CAS  Google Scholar 

  • Rajewski RA, Traiger G, Bresnahan A, Jaberaboansari P, Stella VJ, Thompson DO (1995) Preliminary safety evaluation of parenterally administered sulfoalkyl ether β-cyclodextrin derivatives. J Pharm Sci 84:927–932

    Article  PubMed  CAS  Google Scholar 

  • Ringden O, Meunier F, Tollemar J, Ricci P, Tura S, Kuse E, Viviani MA, Gorin NC, Klastersky J, Fenaux P, Prentice HG, Ksionski G (1991) Efficacy of Amphotericin F encapsulated in liposomes (Ambisome) in the treatment of invasive fungal infections in immunocompromised patients. J Antimicrob Chemother 28B:73–82

    Article  Google Scholar 

  • Roco MC, Bainbridge WS (2002) Converging technologies for improving human performance. National Science Foundation and Department of Commerce Report. Kluwer, Boston, MA

    Google Scholar 

  • Roux E, Lafleur M, Lataste E, Moreau P, Leroux J-C (2003) On the characterization of pH-sensitive liposome/polymer complexes. Biomacromolecules 14:240–248

    Article  CAS  Google Scholar 

  • Roux E, Passirani C, Scheffold S, Benoit J-P, Leroux J-C (2004) Serum-stable and long-circulating, PEGylated, pH-sensitive liposomes. J Control Release 94:447–451

    Article  PubMed  CAS  Google Scholar 

  • Roux E, Stomp R, Giasson S, Pezolet M, Moreau P, Leroux J-C (2002) Steric stabilization of liposomes by pH-responsive Nisopropylacrylamide copolymer. J Pharm Sci 91:1795–1802

    Article  PubMed  CAS  Google Scholar 

  • Ruijgrok RJ, Fens MH, Bakker-Woudenberg IA et al (2005) Nebulization of four commercially available amphotericin B formulations in persistently granulocytopenic rats with invasive pulmonary aspergillosis: evidence of long-term biological activity. J Pharm Pharmacol 57:1289–1295

    Article  PubMed  CAS  Google Scholar 

  • Sachs-Barrable K, Lee SD, Wasan EK et al (2008) Enhancing drug absorption using lipids: a case study presenting the development and pharmacological evaluation of a novel lipid-based oral amphotericin B formulation for the treatment of systemic fungal infections. Adv Drug Deliv Rev 60(6):692–701

    Article  PubMed  CAS  Google Scholar 

  • Sanli O, Karaca I, Isiklan N (2009) Preparation, characterization, and salicylic acid release behavior of chitosan/poly(vinyl alcohol) blend microspheres. J Appl Polym Sci 111:2731–2740

    Article  CAS  Google Scholar 

  • Santangelo R, Paderu P, Delmas G, Chen ZW, Mannino RJ, Zarif L, Perlin D (2000) Oral efficacy of cochleate-amphotericin B (CAMB) in a mouse model with systemic candidiasis. Antimicrob Agents Chemother 44(9):2356–2360

    Article  PubMed  CAS  Google Scholar 

  • Sapra P, Allen TM (2003) Ligand-targeted liposomal anticancer drugs. Prog Lipid Res 42:439–462

    Article  PubMed  CAS  Google Scholar 

  • Satturwar PM, Khandare JN, Nande VS (2001) Niosomal delivery of ketoconazole. Indian drugs 12:620–624

    Google Scholar 

  • Sedlák M, Pravda M, Kubicová L, Mikulcíková P, Ventura K (2007a) Synthesis and characterisation of a new pH-sensitive amphotericin B-poly(ethylene glycol)-b-poly(L-lysine) conjugate. Bioorg Med Chem Lett 17(9):2554–2557

    Article  PubMed  CAS  Google Scholar 

  • Sedlák M, Pravda M, Staud F, Kubicová L, Týcová K, Ventura K (2007b) Synthesis of pH-sensitive amphotericin B-poly(ethylene glycol) conjugates and study of their controlled release in vitro. Bioorg Med Chem 15(12):4069–4076

    Article  PubMed  CAS  Google Scholar 

  • Senior J, Delgado C, Fisher D, Tilcock C, Gregoriadis G (1991) Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim Biophys Acta 1062:77–82

    Article  PubMed  CAS  Google Scholar 

  • Shahiwala A, Misra A (2002) Studies in topical application of niosomally entrapped Nimesulide. J Pharm Pharmaceut Sci 5:220–225

    CAS  Google Scholar 

  • Sharma A, Sharma U (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140

    Article  CAS  Google Scholar 

  • Sinha VR, Tehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90:261–280

    Article  PubMed  CAS  Google Scholar 

  • Slain D, Rogers PD, Cleary JD, Chapman SW (2001) Intravenous itraconazole. Ann Pharmacother 35:720–729

    Article  PubMed  CAS  Google Scholar 

  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    Article  PubMed  CAS  Google Scholar 

  • Stella VJ, Rajewski RA (1997) Cyclodextrins: their future in drug formulation and delivery. Pharm Res 14:556–567

    Article  PubMed  CAS  Google Scholar 

  • Stevens DA (1999) Itraconazole in cyclodextrin solution. Pharmacotherapy 19:603–611

    Article  PubMed  CAS  Google Scholar 

  • Szoka FC Jr, Papahadjopoulos D (1978) Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA 75:4194–4198

    Article  PubMed  CAS  Google Scholar 

  • Taira MC, Chiaramoni NS, Pecuch KM, Alonso-Romanowski S (2004) Stability of liposomal formulations in physiological conditions for oral drug delivery. Drug Deliv 11:123–128

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi H, Matsui Y, Yamamoto H, Kawashima Y (2003) Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J Control Release 86:235–242

    Article  PubMed  CAS  Google Scholar 

  • Taneri F, Guneri T, Aigner Z et al (2002) Improvement in the physicochemical properties of ketoconazole through complexation with cyclodextrin derivatives. J Incl Phenom Macro 44(1–4):257–260

    Article  CAS  Google Scholar 

  • Taneri F, Guneri T, Aigner Z et al (2003a) Improvement of the physicochemical properties of clotrimazole by cyclodextrin complexation. J Incl Phenom Macro 46(1–2):1–13

    Article  CAS  Google Scholar 

  • Taneri F, Guneri T, Aigner Z et al (2003b) Influence of cyclodextrin complexation on the physicochemical and biopharmaceutical properties of ketoconazole. J Incl Phenom Macro 47(1–2):15–23

    CAS  Google Scholar 

  • Taylor TM, Davidson PM, Bruce DB, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:1–19

    Article  CAS  Google Scholar 

  • Tenjarla S, Puranajoti P, Kasina R et al (1998) Preparation, characterization, and evaluation of miconazole-cyclodextrin complexes for improved oral and topical delivery. J Pharm Sci 87(4):425–429

    Article  PubMed  CAS  Google Scholar 

  • Thompson DO (1997) Cyclodextrins-enabling excipients: their present and future use in pharmaceuticals. Crit Rev Ther Drug Carrier Syst 14:1–104

    Article  PubMed  CAS  Google Scholar 

  • Thornton SJ, Wasan KM (2009) Amphotericin B for oral administration to treat systemic fungal infections and visceral leishmaniasis. Expert Opin Drug Deliv 6(3):271–284

    Article  PubMed  CAS  Google Scholar 

  • Tiyaboonchai W (2003) Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J 11:51

    Google Scholar 

  • Torchilin VP (2001) Structure and design of polymeric surfactant- based drug delivery systems. J Control Release 73:137–172

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Shtilman MI, Trubeyskoy VS, Whiteman K, Milstein AM (1994) Amphiphilic vinyl polymers effectively prolong liposome circulation time in vivo. Biochim Biophys Acta 1195:181–184

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP, Zhou F, Huang L (1993) pH-sensitive liposomes. J Liposome Res 3:201–255

    Article  CAS  Google Scholar 

  • Uchegbu IF, Vyas SP (1998) Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int J Pharm 172:33–70

    Article  CAS  Google Scholar 

  • Uekama K (2004) Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull 52(8):900–915

    Article  PubMed  CAS  Google Scholar 

  • Uster PS, Allen TM, Daniel DB, Mendez CJ, Newman MS, Zhu GZ (1996) Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett 386:243–246

    Article  PubMed  CAS  Google Scholar 

  • van Etten EW, Snijders SV, van Vianen W, Bakker-Woudenberg IA (1998a) Superior efficacy of liposomal amphotericin B with prolonged circulation in blood in the treatment of severe candidiasis in leukopenic mice. Antimicrob Agents Chemother 42:2431–2433

    PubMed  Google Scholar 

  • van Etten EWM, van Vianen W, Janneke H, Bakker-Woudenberg IAJM (1998b) Activity of liposomal Amphotericin B with prolonged circulation in blood versus those of AmBisome and Fungizone against intracellular Candida albicans in murine peritoneal macrophages. Antimicrob Agents Chemother 42:2437–2439

    PubMed  Google Scholar 

  • van Etten EWM, van Vianen W, Tijhuis RHG, Storm G, Bakker-Woudenberg IAJM (1995b) Sterically stabilized amphotericin B-liposomes: toxicity and biodistribution in mice. J Control Release 37:123–129

    Article  Google Scholar 

  • van Rooijen N, van Nieuwmegen R (1980) Liposomes in immunology: multilamellar phosphatidylcholine liposome as a simple biodegradable and harmless adjuvant without any immunogenic activity of its own. Immunol Commun 9:243–256

    PubMed  Google Scholar 

  • Varshosaz J, Najafabadi RA (2003) Development and physical characterization of sorbitan monoester niosome for insulin oral delivery. Drug Deliv 10:251–262

    Article  PubMed  CAS  Google Scholar 

  • Vaughn JM, Gao X, Yacaman MJ, Johnston KP, Williams RO III (2005) Comparison of powder produced by evaporative precipitation into aqueous solution (EPAS) and spray freezing into liquid (SFL) technologies using novel Z-contrast STEM and complimentary techniques. Eur J Pharm Biopharm 60(1):81–89

    Article  PubMed  CAS  Google Scholar 

  • Viani P, Cervato G, Gatti P, Cestaro B (1993) Plasma dependent pH sensitivity of liposomes containing sulfatide. Biochim Biophys Acta 1147:73–80

    Article  PubMed  CAS  Google Scholar 

  • Vladimir A, Slepushkin SS, Paul D, Mary SN, Luke SG, Maria CPL, Nejat D (1997) Sterically stabilized pH-sensitive liposomes: intracellular delivery of aqueous contents and prolonged circulation in vivo. J Biol Chem 272:2382–2388

    Article  Google Scholar 

  • Vora B, Khopade AJ, Jain NK (1998) Proniosome based transdermal delivery of levonorgestrel for effective contraception. J Control Release 54:149–165

    Article  PubMed  CAS  Google Scholar 

  • Vyas SP, Quraishi S, Gupta S et al (2005) Aerosolized liposome-based delivery of amphotericin B to alveolar macrophages. Int J Pharm 296:12–25

    Article  PubMed  CAS  Google Scholar 

  • Walsh TJ, Finberg RW, Arndt C, Hiemenz J, Schwartz C, Bodensteiner D et al (1999) Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. New Eng J Med 340:764–771

    Article  PubMed  CAS  Google Scholar 

  • Wang CH, Wang WT, Hsiue GH (2009) Development of polyion complex micelles for encapsulating and delivering amphotericin. Biomaterials 19:3352–3358

    Article  CAS  Google Scholar 

  • Wang XC, He J, Yang CM, Yuan Y (2003) New progress of the research on passive targeting western and Chinese medicine agents. China Hosp Pharm J 23:238–240

    Google Scholar 

  • Wasan EK, Bartlett K, Gershkovich P, et al (2009) Development and characterization of oral lipid-based Amphotericin B formulations with enhanced drug solubility, stability and antifungal activity in rats infected with Aspergillus fumigatus or Candida albicans. Int J Pharm (2009) 372:76–84 doi:10.1016/j.ijpharm.2009.01.003

    Google Scholar 

  • Waterhouse DN, Madden TD, Cullis PR et al (2005) Preparation, characterization and biological analysis of liposomal formulation of vincristine. Meth Enzym 391:40–57

    Article  PubMed  CAS  Google Scholar 

  • Weissmann G, Bloomgerden D, Kaplan R, Cohen C, Hoffstein S, Collins T, Gotlieb A, Nagle D (1975) A general method for introduction of enzymes, by means of immunoglobulin coated liposomes into lysosomes of deficient cells. Proc Natl Acad Sci U S A 72:88–94

    Article  PubMed  CAS  Google Scholar 

  • Willems L, Van der Geest R, De Beule K (2001) Itraconazole oral solution and intravenous formulations: A review of pharmacokinetics and pharmacodynamics. J Clin Pharm Ther 26:159–169

    Article  PubMed  CAS  Google Scholar 

  • Woodle MC (1998) Controlling liposome blood clearance by surface-grafted polymers. Adv Drug Deliv Rev 32:139–152

    Article  PubMed  CAS  Google Scholar 

  • Wouessidjewe D, Skiba M, Leroy-Lechat F, Lemos-Senna E, Puisieux F, Duchêne D (1996) A new concept in drug delivery based on ‘skirt-shaped cyclodextrins aggregates’ present state and future prospects. STP Pharma Sci 6:21–26

    Google Scholar 

  • Xiao L, Li B (2002) Drug-loaded nanoparticle and TCM modernization. Chinese Traditional Herbal Drugs 33:385–388

    CAS  Google Scholar 

  • Yamauchi H, Yano T, Kato T, Tanaka I, Nakabayashi S, Higashi K, Miyoshi S, Yamada H (1994) Effects of sialic acid derivative on long circulating time and tumor concentration of liposomes. Int J Pharmacol 113:141–148

    Article  Google Scholar 

  • Yang W, Tam J, Miller DA, Zhou J, McConville JT, Johnston KP et al (2008a) High bioavailability from nebulized itraconazole nanoparticle dispersions with biocompatible stabilizers. Int J Pharm 361(1–2):177–188

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Wiederhold NP, Williams RO (2008b) Drug delivery strategies for improved azole antifungal action. Expert Opin Drug Deliv 5(11):1199–1216

    Article  PubMed  CAS  Google Scholar 

  • Yi Y, Yoon HJ, Bong OK, Myungseob S, Sun-Ok K, Sung-Joo H, Min HS (2007) A mixed polymeric micellar formulation of itraconazole: Characteristics, toxicity and pharmacokinetics. J Control Release 117:59–67

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama M, Okano T, Sakurai Y, Ekimoto H, Shibazaki C, Kataoka K (1991) Toxicity and antitumor activity against solid tumors of micelleforming polymeric anticancer drug and its extremely long circulation in blood. Cancer Res 51:3229–3236

    PubMed  CAS  Google Scholar 

  • Yong CS, Li DX, Prabagar B et al (2007) The effect of beta-cyclodextrin complexation on the bioavailability and hepatotoxicity of clotrimazole. Pharmazie 62(10):756–759

    PubMed  CAS  Google Scholar 

  • Yu BG, Okano T, Kataoka K, Kwon G (1998a) Polymeric micelles for drug delivery: solubilization and haemolytic activity of amphotericin B. J Control Release 30:131–136

    Article  Google Scholar 

  • Yu BG, Okano T, Kataoka K, Sardari S, Kwon GS (1998b) In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(β-benzyl- aspartate) micelles. J Control Release 56:285–291

    Article  PubMed  CAS  Google Scholar 

  • Yuan DF, Yi YM (2003) Advance of the research on liver-targeted nanoparticles. Her Med 22:113–114

    Google Scholar 

  • Zarif L, Graybill JR, Perlin D, Najvar L, Bocanegra R, Mannino RJ (2000) Antifungal activity of amphotericin B cochleates against Candida albicans infection in a mouse model. Antimicrob Agents Chemother 44:1463–1469

    Article  PubMed  CAS  Google Scholar 

  • Zarif L, Jin T, Scolpino A, Mannino RJ (1999a) Are cochleates the new lipid-based carrier for oral drug delivery? In: Abstracts of the 39th International Conference on Antimicrobial Agents and Chemotherapy, San Francisco, CA, 26–29 September 1999; Washington, DC, American Society for Microbiology, Abstract 1939 p 344

    Google Scholar 

  • Zarif L, Mannino RJ (2000) Cochleates, lipid-based vehicles for gene delivery – Concept, achievements and future development. In: Habib N (ed) Cancer gene therapy: past achievements and future challenges. Plenum, London, pp 83–94

    Google Scholar 

  • Zarif L, Perlin D (2002) Amphotericin B nonocholeates: from formulation to oral efficacy. Drug Deliv Technol 2(4):89

    Google Scholar 

  • Zarif L, Segarra L, Jin T, Scolpino A, Hyra D, Perlin DS, Graybill JR, Mannino RJ (1999b) Oral and systemic delivery of AmB mediated by cochleates. AAPS PharmSci 1:S–453

    Google Scholar 

  • Zhang JA, Xuan T, Parmar M et al (2004) Development and charaterization of a novel liposome-based formulation of SN-38. Int J Pharm 270(1–2):93–107

    Article  PubMed  CAS  Google Scholar 

  • Zhang LF, Granick S (2006) How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett 6:694–698

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2006) Advances in research on target-oriented drug delivery system of Chinese material medical. Chinese Traditional Herbal Drugs 37:641–647

    CAS  Google Scholar 

  • Zho F, Neutra MR (2002) Antigen delivery to mucosa-associated lymphoid tissues using liposomes as a carrier. Biosci Rep 22:355–369

    Article  PubMed  Google Scholar 

  • Zia V, Rajewski RA, Stella VJ (2001) Effect of cyclodextrin charge on complexation of neutral and charged substrates: comparison of (SBE)7M-β-CD to HP-β-CD. Pharm Res 18:667–673

    Article  PubMed  CAS  Google Scholar 

  • Zignani M, Drummond DC, Meyer O, Hong K, Leroux J-C (2000) In vitro characterization of a novel polymeric-based pH-sensitive liposome system. Biochim Biophys Acta 1463:383–394

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Owais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zia, Q. et al. (2010). Novel Drug Delivery Systems for Antifungal Compounds. In: Ahmad, I., Owais, M., Shahid, M., Aqil, F. (eds) Combating Fungal Infections. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12173-9_20

Download citation

Publish with us

Policies and ethics