Skip to main content

A Stable Skeletonization for Tabletop Gesture Recognition

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6016))

Abstract

An efficient and stable skeletonization consisting of a Voronoi skeletonization following by a two step pruning is presented. The first pruning step removes Voronoi edges crossing the shape boundary. The second follows a Discrete Curve Evolution approach. Both pruning steps can be done very efficiently because entire Voronoi segments are pruned based on tests on points. The algorithm works in realtime and could be used in a gesture recognition interface for tabletop interfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai, X., Latecki, L.J., Liu, W.Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(3), 449–462 (2007)

    Article  Google Scholar 

  2. Blum, H.: Biological shape and visual science. Theoretical Biology 38, 205–287 (1973)

    Article  Google Scholar 

  3. Blum, H.: A transformation for extracting new descriptors of shape. In: Dunn, W.W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967)

    Google Scholar 

  4. Brandt, J.W.: Convergence and continuity criteria for discrete approximations of the continuous planar skeleton. CVGIP: Image Underst. 59(1), 116–124 (1994)

    Article  Google Scholar 

  5. Brandt, J.W., Algazi, V.R.: Continuous skeleton computation by voronoi diagram. CVGIP: Image Underst. 55(3), 329–338 (1992)

    Article  MATH  Google Scholar 

  6. Chatty, S., Lemort, A., Vales, S.: Multiple input support in a model-based interaction framework, October 2007, pp. 179–186 (2007)

    Google Scholar 

  7. Couprie, M., Coeurjolly, D., Zrour, R.: Discrete bisector function and euclidean skeleton in 2d and 3d. Image Vision Comput. 25(10), 1543–1556 (2007)

    Article  Google Scholar 

  8. Fitzmaurice, G.W., Ishii, H., Buxton, W.A.S.: Bricks: laying the foundations for graspable user interfaces. In: CHI 1995: Proceedings of the SIGCHI conference on Human factors in computing systems, New York, NY, USA, pp. 442–449. ACM Press/Addison-Wesley Publishing Co. (1995)

    Google Scholar 

  9. Hesselink, W.H., Roerdink, J.B.T.M.: Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(12), 2204–2217 (2008)

    Article  Google Scholar 

  10. Ishii, H., Kobayashi, M., Grudin, J.: Integration of interpersonal space and shared workspace: Clearboard design and experiments. ACM Trans. Inf. Syst. 11(4), 349–375 (1993)

    Article  Google Scholar 

  11. Ishii, H., Miyake, N.: Toward an open shared workspace: computer and video fusion approach of teamworkstation. Commun. ACM 34(12), 37–50 (1991)

    Article  Google Scholar 

  12. Krueger, M.W., Gionfriddo, T., Hinrichsen, K.: Videoplace: An artificial reality. SIGCHI Bull. 16(4), 35–40 (1985)

    Article  Google Scholar 

  13. Latecki, L.J., Lakämper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Comput. Vis. Image Underst. 73(3), 441–454 (1999)

    Article  Google Scholar 

  14. Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1185–1190 (2000)

    Article  Google Scholar 

  15. Latecki, L.J., Lakämper, R.: Application of planar shape comparison to object retrieval in image databases. Pattern Recognition 35, 15–29 (2002)

    Article  MATH  Google Scholar 

  16. Liu, L., Erdogmus, H., Maurer, F.: An environment for collaborative iteration planning, July 2005, pp. 80–89 (2005)

    Google Scholar 

  17. Ogniewicz, R., Ilg, M.: Voronoi skeletons: theory and applications. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Proceedings CVPR 1992, June 1992, pp. 63–69 (1992)

    Google Scholar 

  18. Pangaro, G., Maynes-aminzade, D., Ishii, H.: The actuated workbench: computer-controlled actuation in tabletop tangible interfaces. In: Interfaces, Proceedings of Symposium on User Interface Software and Technology, pp. 181–190 (2002)

    Google Scholar 

  19. Patten, J., Ishii, H.: Mechanical constraints as computational constraints in tabletop tangible interfaces. In: CHI 2007: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 809–818. ACM Press, New York (2007)

    Chapter  Google Scholar 

  20. Pauchet, A., Coldefy, F., Lefebvre, L., Picard, S.L.D., Perron, L., Bouguet, A., Collobert, M., Guerin, J., Corvaisier, D.: Tabletops: Worthwhile experiences of collocated and remote collaboration, October 2007, pp. 27–34 (2007)

    Google Scholar 

  21. Scott, S.D., Grant, K.D., Mandryk, R.L.: System guidelines for co-located, collaborative work on a tabletop display. In: European Conference Computer-Supported Cooperative Work, ECSCW 2003 (2003)

    Google Scholar 

  22. Siddiqi, K., Bouix, S., Tannenbaum, A., Zucker, S.W.: Hamilton-jacobi skeletons. Int. J. Comput. Vision 48(3), 215–231 (2002)

    Article  MATH  Google Scholar 

  23. Streitz, N.A., Geisler, J., Haake, J.M., Hol, J.: DOLPHIN: Integrated meeting support across local and remote desktop environments and liveboards. In: Computer Supported Cooperative Work, pp. 345–358 (1994)

    Google Scholar 

  24. Tang, J.C., Minnenan, S.L.: Videodraw: A video interface for collaborative drawing. In: Proc. of CHI-1990, Seattle, WA, pp. 313–320 (1990)

    Google Scholar 

  25. Tang, J.C., Minneman, S.L.: Videodraw: a video interface for collaborative drawing. ACM Trans. Inf. Syst. 9(2), 170–184 (1991)

    Article  Google Scholar 

  26. Tuddenham, P., Robinson, P.: Distributed tabletops: Supporting remote and mixed-presence tabletop collaboration, October 2007, pp. 19–26 (2007)

    Google Scholar 

  27. Wellner, P.: Interacting with paper on the digitaldesk. Commun. ACM 36(7), 87–96 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beristain, A., Graña, M. (2010). A Stable Skeletonization for Tabletop Gesture Recognition. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds) Computational Science and Its Applications – ICCSA 2010. ICCSA 2010. Lecture Notes in Computer Science, vol 6016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12156-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12156-2_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12155-5

  • Online ISBN: 978-3-642-12156-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics