Facing the Archaeological Looting in Peru by Using Very High Resolution Satellite Imagery and Local Spatial Autocorrelation Statistics

  • Rosa Lasaponara
  • Nicola Masini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6016)

Abstract

In many countries of Southern America, Asia and Middle East clandestine excavations affect more than other man-made and natural risks archaeological heritage. Direct and aerial surveillance are not always suitable for protection and monitoring sites of cultural interest. This favoured the use of Very high resolution satellite data for the detection of looting pits.

This paper is focused on results we obtained from ongoing research focused on the use of VHR satellite images and spatial autocorrelation statistics, such as Moran’s I, Geary’s C, and Getis-Ord Local Gi index, for the identification and monitoring of looting.

A time series of satellite images (QuickBird-2 and World-View-1) has been exploited to analyze and monitor archaeological looting in Cahuachi, a large Ceremonial Centre built by the Nasca Civilization in Southern Peru. The spatial autocorrelation statistics enabled us to extract spatial anomalies linked to illegal excavations and to recognize and quantitatively characterize looting patterns over the years.

The results obtained encourage the application of satellite by means of cluster analysis techniques for the monitoring of archaeological sites.

Keywords

looting NASCA satellite Spatial autocorrelation statistics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lasaponara, R., Masini, N. (eds.): Advances in Remote Sensing for Archaeology and Cultural Heritage Management. In: Proc. of I International EARSeL Workshop “Advances in Remote Sensing for Archaeology and Culturale Heritage Management”, Rome, Aracne Roma, September 30 -October 4 (2008)Google Scholar
  2. 2.
    Lasaponara, R., Masini, N.: Detection of archaeological crop marks by using satellite QuickBird multispectral imagery. Journal of Archaeological Science 34, 214–221 (2007)CrossRefGoogle Scholar
  3. 3.
    Lasaponara, R., Masini, N.: Full-waveform Airborne Laser Scanning for the detection of medieval archaeological microtopographic relief. Journal of Cultural Heritage 10S, e78–e82 (2009)CrossRefGoogle Scholar
  4. 4.
    Stone, E.C.: Patterns of looting in southern Iraq. Antiquity 82, 125–138 (2008)Google Scholar
  5. 5.
    Parcak, S.: Satellite remote sensing methods for monitoring archaeological tells in the Middle East. Journal of field archaeology 32(1), 65–81 (2007)Google Scholar
  6. 6.
    Masini, N., Rizzo, E., Lasaponara, R.: Teledeteccion y Investigaciones geofísicas en Cahuachi: primeros resultados. Nasca. El Desierto de los Dioses de Cahuachi, Graph Ediciones Lima (2009)Google Scholar
  7. 7.
    Masini, N., Lasaponara, R., Orefici, G.: Addressing the challenge of detecting archaeological adobe structures in Southern Peru using QuickBird imagery. Journal of Cultural Heritage 10S, e3–e9 (2009)CrossRefGoogle Scholar
  8. 8.
    Orefici, G.: Nasca. Archeologia per una ricostruzione storica. Jaca Book (1992)Google Scholar
  9. 9.
    Silverman, H.: Cahuachi in the Ancient Nasca World. University Of Iowa Press (1993)Google Scholar
  10. 10.
    Orefici, G., Drusini, A.: Nasca: Hipótesis y Evidencias de su Desarrollo Cultural, Centro Italiano Studi e Ricerche Archeologiche Precolombiane, Brescia (2003)Google Scholar
  11. 11.
    Getis, A., Ord, J.K.: The analysis of spatial association by use of distance statistics. Geographical Analysis 24, 189–206 (1992)Google Scholar
  12. 12.
    Anselin, L.: Local Indicators of Spatial Association LISA. Geographical Analysis 27, 93–115 (1995)Google Scholar
  13. 13.
    Moran, P.: The interpretation of statistical maps. Journal of the Royal Statistical Society 10 (1948)Google Scholar
  14. 14.
    Geary, R.: The contiguity ratio and statistical mappingâ. The Incorporated Statistician 5 (1954)Google Scholar
  15. 15.
    Ripley, B.D.: Spatial Statistics. Wiley & Sons, New York (1981)MATHCrossRefGoogle Scholar
  16. 16.
    Shabenberger, O., Gotway, C.A.: Statistical methods for spatial data analysis. Chapman & Hall, Sydney (2005)Google Scholar
  17. 17.
    Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical analysis and modelling of spatial point patterns. Wiley, Chichester (2008)MATHGoogle Scholar
  18. 18.
    Ciminale, M., Gallo, D., Lasaponara, R., Masini, N.: A Multiscale Approach for Reconstructing Archaeological Landscapes: Applications in Northern Apulia (Italy). Archaeological Prospection 16, 143–153 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Rosa Lasaponara
    • 1
  • Nicola Masini
    • 2
  1. 1.CNR-IMAA (Istituto di Metodologie di Analisi Ambientale)Tito Scalo (PZ)Italy
  2. 2.Archaeological and Monumental heritage instituteNational Research CouncilTito Scalo (PZ)Italy

Personalised recommendations