Skip to main content

Using Imaginary Ensembles to Select GP Classifiers

  • Conference paper
Genetic Programming (EuroGP 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6021))

Included in the following conference series:

  • 768 Accesses


When predictive modeling requires comprehensible models, most data miners will use specialized techniques producing rule sets or decision trees. This study, however, shows that genetically evolved decision trees may very well outperform the more specialized techniques. The proposed approach evolves a number of decision trees and then uses one of several suggested selection strategies to pick one specific tree from that pool. The inherent inconsistency of evolution makes it possible to evolve each tree using all data, and still obtain somewhat different models. The main idea is to use these quite accurate and slightly diverse trees to form an imaginary ensemble, which is then used as a guide when selecting one specific tree. Simply put, the tree classifying the largest number of instances identically to the ensemble is chosen. In the experimentation, using 25 UCI data sets, two selection strategies obtained significantly higher accuracy than the standard rule inducer J48.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others


  1. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  2. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth International Group (1984)

    Google Scholar 

  3. Tsakonas, A.: A comparison of classification accuracy of four genetic programming-evolved intelligent structures. Information Sciences 176(6), 691–724 (2006)

    Article  Google Scholar 

  4. Bojarczuk, C.C., Lopes, H.S., Freitas, A.A.: Data Mining with Constrained-syntax Genetic Programming: Applications in Medical Data Sets. In: Intelligent Data Analysis in Medicine and Pharmacology - a workshop at MedInfo-2001 (2001)

    Google Scholar 

  5. Johansson, U., König, R., Niklasson, L.: Inconsistency - Friend or Foe. In: International Joint Conference on Neural Networks, pp. 1383–1388. IEEE Press, Los Alamitos (2007)

    Chapter  Google Scholar 

  6. Provost, F., Domingos, P.: Tree induction for probability-based ranking. Machine Learning 52, 199–215 (2003)

    Article  MATH  Google Scholar 

  7. Johansson, U., Sönströd, C., Löfström, T., König, R.: Using Genetic Programming to Obtain Implicit Diversity. In: IEEE Congress on Evolutionary Computation, pp. 2454–2459. IEEE Press, Los Alamitos (2009)

    Chapter  Google Scholar 

  8. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  9. Dietterich, T.G.: Machine learning research: four current directions. The AI Magazine 18, 97–136 (1997)

    Google Scholar 

  10. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Advances in Neural Information Processing Systems, San Mateo, CA, vol. 2, pp. 650–659. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  11. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  12. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases, University of California, Department of Information and Computer Science (1998)

    Google Scholar 

  13. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7, 1–30 (2006)

    Google Scholar 

  14. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of American Statistical Association 32, 675–701 (1937)

    Article  Google Scholar 

  15. Nemenyi, P.B.: Distribution-free multiple comparisons, PhD thesis, Princeton University (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Johansson, U., König, R., Löfström, T., Niklasson, L. (2010). Using Imaginary Ensembles to Select GP Classifiers. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds) Genetic Programming. EuroGP 2010. Lecture Notes in Computer Science, vol 6021. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12147-0

  • Online ISBN: 978-3-642-12148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics