On the Benefit of Sub-optimality within the Divide-and-Evolve Scheme

  • Jacques Bibai
  • Pierre Savéant
  • Marc Schoenauer
  • Vincent Vidal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6022)


Divide-and-Evolve (DaE) is an original “memeticization” of Evolutionary Computation and Artificial Intelligence Planning. DaE optimizes either the number of actions, or the total cost of actions, or the total makespan, by generating ordered sequences of intermediate goals via artificial evolution, and calling an external planner to solve each subproblem in turn. DaE can theoretically use any embedded planner. However, since the introduction of this approach only one embedded planner had been used: the temporal optimal planner CPT. In this paper, we propose a new version of DaE, using time-based Atom Choice and embarking the sub-optimal planner YAHSP in order to test the robustness of the approach and to evaluate the impact of using a sub-optimal planner rather than an optimal one, depending on the type of planning problem.


Planning Problem Partial State Heuristic Function Plan Quality Embed Planner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bibai, J., Schoenauer, M., Savéant, P.: Divide-And-Evolve Facing State-of-the-Art Temporal Planners during the 6th International Planning Competition. In: Cotta, C., Cowling, P. (eds.) EvoCOP 2009. LNCS, vol. 5482, pp. 133–144. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bibai, J., Savéant, P., Schoenauer, M., Vidal, V.: DAE: Planning as Artificial Evolution (Deterministic part). In: At International Planning Competition, IPC (2008),
  3. 3.
    Bibai, J., Savéant, P., Schoenauer, M., Vidal, V.: Learning Divide-and-Evolve Parameter Configurations with Racing. In: Coles, A., et al. (eds.) ICAPS 2009, Workshop on Planning and Learning. AAAI Press, Menlo Park (2009)Google Scholar
  4. 4.
    Brié, A.H., Morignot, P.: Genetic Planning Using Variable Length Chromosomes. In: Proc. ICAPS (2005)Google Scholar
  5. 5.
    Fikes, R., Nilsson, N.: STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving. Artificial Intelligence 1, 27–120 (1971)CrossRefGoogle Scholar
  6. 6.
    Fox, M., Long, D.: PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains. JAIR 20, 61–124 (2003)zbMATHGoogle Scholar
  7. 7.
    Gerevini, A., Saetti, A., Serina, I.: On Managing Temporal Information for Handling Durative Actions in LPG. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, pp. 91–104. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Gerevini, A., Saetti, A., Serina, I.: Planning through Stochastic Local Search and Temporal Action Graphs in LPG. JAIR 20, 239–290 (2003)zbMATHGoogle Scholar
  9. 9.
    Haslum, P., Geffner, H.: Admissible Heuristics for Optimal Planning. In: Proc. AIPS 2000, pp. 70–82 (2000)Google Scholar
  10. 10.
    Helmert, M.: The Fast Downward Planning System. JAIR 26(1), 191–246 (2006)zbMATHGoogle Scholar
  11. 11.
    Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation Through Heuristic Search. JAIR 14, 253–302 (2001)zbMATHGoogle Scholar
  12. 12.
    Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  13. 13.
    McDermott, D.: PDDL – The Planning Domain Definition language (1998),
  14. 14.
    Muslea, I.: SINERGY: A Linear Planner Based on Genetic Programming. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348, pp. 312–324. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Richter, S., Helmert, M., Westphal, M.: Landmarks Revisited. In: Proc. AAAI 2008, pp. 975–982. AAAI Press, Menlo Park (2008)Google Scholar
  16. 16.
    Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: a New Memetic Scheme for Domain-Independent Temporal Planning. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 247–260. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Schoenauer, M., Savéant, P., Vidal, V.: Divide-and-Evolve: a Sequential Hybridization Strategy using Evolutionary Algorithms. In: Michalewicz, Z., Siarry, P. (eds.) Advances in Metaheuristics for Hard Optimization, pp. 179–198. Springer, Heidelberg (2007)Google Scholar
  18. 18.
    Spector, L.: Genetic Programming and AI Planning Systems. In: Proc. AAAI 1994, pp. 1329–1334. AAAI/MIT Press (1994)Google Scholar
  19. 19.
    Vidal, V.: A Lookahead Strategy for Heuristic Search Planning. In: 14th International Conference on Automated Planning & Scheduling - ICAPS, pp. 150–160 (2004)Google Scholar
  20. 20.
    Vidal, V., Geffner, H.: Branching and Pruning: An Optimal Temporal POCL Planner based on Constraint Programming. In: Proc. AAAI, pp. 570–577 (2004)Google Scholar
  21. 21.
    Vidal, V., Geffner, H.: Branching and Pruning: An Optimal Temporal POCL Planner based on Constraint Programming. Artificial Intelligence 170(3), 298–335 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Westerberg, C.H., Levine, J.: “GenPlan”: Combining Genetic Programming and Planning. In: Garagnani, M. (ed.) 19th Workshop PLANSIG 2000, The Open University (2000)Google Scholar
  23. 23.
    Westerberg, C.H., Levine, J.: Investigations of Different Seeding Strategies in a Genetic Planner. In: Boers, E.J.W., Gottlieb, J., Lanzi, P.L., Smith, R.E., Cagnoni, S., Hart, E., Raidl, G.R., Tijink, H. (eds.) EvoIASP 2001, EvoWorkshops 2001, EvoFlight 2001, EvoSTIM 2001, EvoCOP 2001, and EvoLearn 2001. LNCS, vol. 2037, pp. 505–514. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Yuan, B., Gallagher, M.: Statistical Racing Techniques for Improved Empirical Evaluation of Evolutionary Algorithms. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 172–181. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Yuan, B., Gallagher, M.: Combining Meta-EAs and Racing for Difficult EA Parameter Tuning Tasks. In: Parameter Setting in Evolutionary Algorithms, pp. 121–142. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jacques Bibai
    • 1
    • 2
  • Pierre Savéant
    • 2
  • Marc Schoenauer
    • 1
  • Vincent Vidal
    • 3
  1. 1.Projet TAO, INRIA Saclay & LRI-CNRSUniv. Paris SudOrsayFrance
  2. 2.Thales Research & TechnologyPalaiseauFrance
  3. 3.ONERA – DCSDToulouseFrance

Personalised recommendations