A New Primal-Dual Genetic Algorithm: Case Study for the Winner Determination Problem

  • Madalina Raschip
  • Cornelius Croitoru
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6022)


This paper presents a new evolutionary computing strategy which uses the linear programming duality information to help the search for optimum solutions of hard optimization problems. The algorithm is restarted several times when it is stuck into a local optima. At each restart, the appropriate dual space is constructed. A new population of primal individuals is generated using the information from dual solutions and is considered for next iterations. The pursued goal was not to find the best algorithm for solving winner determination problem, but to prove the method’s viability using the problem as a case study. Experiments on realistic instances were performed.


Dual Solution Linear Programming Relaxation Combinatorial Auction Stochastic Local Search Winner Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer Academic Publishers, Boston (1989)zbMATHGoogle Scholar
  2. 2.
    Yang, S.: PDGA: the Primal-Dual Genetic Algorithm. In: Abraham, A., Koppen, M., Franke, K. (eds.) Design and Application of Hybrid Intelligent Systems, pp. 214–223. IOS Press, Amsterdam (2003)Google Scholar
  3. 3.
    Raidl, G., Puchinger, J.: Combining (Integer) Linear Programming Techniques and Metaheuristics for Combinatorial Optimization. In: Blum, C., Blesa Aguilera, M.J., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics, An Emerging Approach to Optimization, Studies in Computational Intelligence, vol.114, pp. 31–62 (2008)Google Scholar
  4. 4.
    Pfeiffer, J., Rothlauf, F.: Analysis of Greedy Heuristics and Weight-Coded EAs for Multidimensional Knapsack Problems and Multi-Unit Combinatorial Auctions. In: Proceedings of the 9th annual Conference on Genetic and Evolutionary Computation, p.1529 (2007)Google Scholar
  5. 5.
    Hansen, P., Brimberg, J., Mladenović, N., Urosević, D.: Primal-dual variable neighbourhood search for the simple plant location problem. INFORMS Journal on Computing 19(4), 552–564 (2007)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Dantzig, G.B., Ford, L.R., Fulkerson, D.R.: A primal-dual algorithm for linear programs. In: Kuhn, H.W., Tucker, A.W. (eds.) Linear Inequalities and Related Systems, pp. 171–181. Princeton University Press, Princeton (1956)Google Scholar
  7. 7.
    Williamson, D.P.: The Primal-Dual Method for Approximation Algorithms. Mathematical Programming, Series B 91(3), 447–478 (2002)zbMATHCrossRefGoogle Scholar
  8. 8.
    Fujishima, Y., Leyton-Brown, K., Shoham, Y.: Taming the computational complexity of combinatorial auctions: optimal and approximate approaches. In: Sixteenth international joint conference on artificial intelligence, pp. 48–53 (1999)Google Scholar
  9. 9.
    Sandholm, T., Suri, S., Gilpin, A., Levine, D.: CABoB: a fast optimal algorithm for combinatorial auctions. In: Proceedings of the international joint conferences on artificial intelligence, pp. 1102–1108 (2001)Google Scholar
  10. 10.
    Nisan, N.: Bidding and Allocation in Combinatorial Auctions. In: Proceedings of ACM conference on electronic commerce EC, pp. 1–12 (2000)Google Scholar
  11. 11.
    Andersson, A., Tenhunen, M., Ygge, F.: Integer programming for combinatorial auction winner determination. In: 4th Internationl Conference on Multiagent Systems (2000)Google Scholar
  12. 12.
    Hoos, H.H., Boutilier, C.: Solving combinatorial auctions using stochastic local search. In: Proceedings of the 17th national conference on artificial intelligence, pp. 22–29 (2000)Google Scholar
  13. 13.
    Guo, Y., Lim, A., Rodrigues, B., Zhu, Y.: Heuristics for a bidding problem. Computers and Operations Research 33(8), 2179–2188 (2006)zbMATHCrossRefGoogle Scholar
  14. 14.
    Boughaci, D., Benhamou, B., Drias, H.: A memetic algorithm for the optimal winner determination problem. Soft Computing 13(8-9), 905–917 (2009)CrossRefGoogle Scholar
  15. 15.
    Vohra, R., de Vries, S.: Combinatorial auctions: A survey. INFORMS Journals of Computing 15(3), 284–309 (2003)CrossRefGoogle Scholar
  16. 16.
    Rothkopf, M.H., Pekec, A., Harstad, R.M.: Computationally manageable combinatorial auctions. Management Science 44(8), 1131–1147 (1998)zbMATHCrossRefGoogle Scholar
  17. 17.
    Gonen, R., Lehmann, D.: Linear Programming helps solving large multi-unit combinatorial auctions. In: Proceedings of the Electronic Market Design Workshop (2001)Google Scholar
  18. 18.
    DeMartini, C., Kwasnica, A.M., Ledyard, O., Porter, D.: A New and Improved Design for Multi-Object Iterative Auctions. Management Science 51(3), 419–434 (2005)CrossRefGoogle Scholar
  19. 19.
    Gottlieb, J.: Permutation-based evolutionary algorithms for multidimensional knapsack problems. In: Proceedings of the 2000 ACM symposium on Applied computing, vol. (1), pp. 408–414 (2000)Google Scholar
  20. 20.
    Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold (1991)Google Scholar
  21. 21.
    Krysta, P.: Greedy Approximation via Duality for Packing, Combinatorial Auctions and Routing. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 615–627. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Leyton-Brown, K., Pearson, M., Shoham, Y.: Towards a Universal Test Suite for Combinatorial Auction Algorithms. In: Proceedings of the 2nd ACM conference on Electronic commerce, pp. 66–76 (2000)Google Scholar
  23. 23.
    Berkelaar, M.: lp_solve - version 5.5. Eindhoven University of Technology,
  24. 24.
    Zurel, E., Nisan, N.: An Efficient Approximate Allocation Algorithm for Combinatorial Auctions. In: Proceedings of the 3rd ACM conference on Electronic commerce, pp. 125–136 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Madalina Raschip
    • 1
  • Cornelius Croitoru
    • 1
  1. 1.“Al.I.Cuza” University of IasiRomania

Personalised recommendations