Advertisement

A Memetic Algorithm for Workforce Distribution in Dynamic Multi-Skill Call Centres

  • David Millán-Ruiz
  • J. Ignacio Hidalgo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6022)

Abstract

In this paper, we describe a novel approach for workforce distribution in dynamic multi-skill call centres. Dynamic multi-skill call centres require quick adaptations to a changing environment that only fast greedy heuristics can handle. The use of memetic algorithms, which are more complex than ad-hoc heuristics, can guide us to more accurate solutions. In order to apply memetic algorithms to such a dynamic environment, we propose a reformulation of the traditional problem, which combines predictions of future situations with a precise search mechanism, by enlarging the time-frame considered. Concretely, we propose a neural network for predicting call arrivals and the number of available agents, and a memetic algorithm to carry out the assignment of incoming calls to agents, which outperforms classical approaches to this dynamic environment. We also test our method on a real-world environment within a large multinational telephone operator.

Keywords

Memetic Algorithms Dynamic Multi-Skill Call Centre 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Avramidis, A.N., Chan, W., Gendreau, M., L’Ecuyer, P., Pisacane, O.: Optimizing daily agent scheduling in a multiskill CC. European Journal of Operational Research (2009)Google Scholar
  2. 2.
    Brucker, P.: Scheduling algorithms, 2nd edn. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  3. 3.
    Chauvet, F., Proth, J.M., Soumare, A.: The simple and multiple job assignment problems. International Journal of Production Research 38(14), 3165–3179 (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bhulaii, S., Koole, G., Pot, A.: Simple Methods for Shift Scheduling in Multiskill Call Centers. M&SOM 10(3), 411–420 (2008)CrossRefGoogle Scholar
  5. 5.
    Koole, G.: Call Center Mathematics: A scientific method for understanding and improving contact centers (2006), http://www.cs.vu.nl/~koole/ccmath/book.pdf
  6. 6.
    Whitt, W.: Staffing a call center with uncertain arrival rate and absenteeism. PO&M (2006)Google Scholar
  7. 7.
    Garnett, O., Mandelbaum, A.: An Introduction to Skills-Based Routing and its Operational Complexities, Teaching Note (2000)Google Scholar
  8. 8.
    Thompson, G.M.: Labor staffing and scheduling models for controlling service levels. Naval Res. Logist., 719–740 (1997)Google Scholar
  9. 9.
    Ingolfsson, A., Cabral, E., Wu, X.: Combining integer programming and the randomization method to schedule employees. TR, School of Business, University of Alberta (2007)Google Scholar
  10. 10.
    Land, A.H., Doig, A.G.: An automated method for solving discrete programming problems. Econometrica 28, 497–520 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Amer. Math. Soc. 64, 275–278 (1958)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bhulai, S., Koole, G., Pot, A.: Simple Methods for Shift Scheduling in Multiskill Call Centers. Published online in Articles in Advance (January 4, 2008)Google Scholar
  13. 13.
    Ahrens, J.H., Ulrich, D.: Computer Methods for Sampling from Gamma, Beta, Poisson and Binomial Distributions. Computing 12(3), 223–246Google Scholar
  14. 14.
    Koole, G., Pot, S., Talim, J.: Routing heuristics for multi-skill call centers. In: Proceedings of the Winter Simulation Conference, pp. 1813–1816 (2003)Google Scholar
  15. 15.
    Pacheco, J., Millán-Ruiz, D., Vélez, J.L.: Neural Networks for Forecasting in a Multi-skill Call Centre. In: EANN 2009, London, UK, August 27-29 (2009)Google Scholar
  16. 16.
    Prügel-Bennett, A.: Finite Population Effects for Ranking and Tournament Selection. Complex Systems 12(2), 183–205 (2000)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Pearson, D.W., Steele, N.C., Albrecht, R.F.: Artificial neural nets and genetic algorithms. In: Proceedings of the international conference, Roanne, France (2003)Google Scholar
  18. 18.
    Chakraborty, B., Chaudhuri, P.: On The Use of Genetic Algorithm with Elitism in Robust and Nonparametric Multivariate Analysis. Austrian Journal of statistics 32 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Millán-Ruiz
    • 1
  • J. Ignacio Hidalgo
    • 2
  1. 1.Telefonica Research & DevelopmentMadridSpain
  2. 2.Complutense U. of MadridMadridSpain

Personalised recommendations