A Memetic Algorithm for Workforce Distribution in Dynamic Multi-Skill Call Centres

  • David Millán-Ruiz
  • J. Ignacio Hidalgo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6022)


In this paper, we describe a novel approach for workforce distribution in dynamic multi-skill call centres. Dynamic multi-skill call centres require quick adaptations to a changing environment that only fast greedy heuristics can handle. The use of memetic algorithms, which are more complex than ad-hoc heuristics, can guide us to more accurate solutions. In order to apply memetic algorithms to such a dynamic environment, we propose a reformulation of the traditional problem, which combines predictions of future situations with a precise search mechanism, by enlarging the time-frame considered. Concretely, we propose a neural network for predicting call arrivals and the number of available agents, and a memetic algorithm to carry out the assignment of incoming calls to agents, which outperforms classical approaches to this dynamic environment. We also test our method on a real-world environment within a large multinational telephone operator.


Memetic Algorithms Dynamic Multi-Skill Call Centre 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avramidis, A.N., Chan, W., Gendreau, M., L’Ecuyer, P., Pisacane, O.: Optimizing daily agent scheduling in a multiskill CC. European Journal of Operational Research (2009)Google Scholar
  2. 2.
    Brucker, P.: Scheduling algorithms, 2nd edn. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  3. 3.
    Chauvet, F., Proth, J.M., Soumare, A.: The simple and multiple job assignment problems. International Journal of Production Research 38(14), 3165–3179 (2000)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bhulaii, S., Koole, G., Pot, A.: Simple Methods for Shift Scheduling in Multiskill Call Centers. M&SOM 10(3), 411–420 (2008)CrossRefGoogle Scholar
  5. 5.
    Koole, G.: Call Center Mathematics: A scientific method for understanding and improving contact centers (2006),
  6. 6.
    Whitt, W.: Staffing a call center with uncertain arrival rate and absenteeism. PO&M (2006)Google Scholar
  7. 7.
    Garnett, O., Mandelbaum, A.: An Introduction to Skills-Based Routing and its Operational Complexities, Teaching Note (2000)Google Scholar
  8. 8.
    Thompson, G.M.: Labor staffing and scheduling models for controlling service levels. Naval Res. Logist., 719–740 (1997)Google Scholar
  9. 9.
    Ingolfsson, A., Cabral, E., Wu, X.: Combining integer programming and the randomization method to schedule employees. TR, School of Business, University of Alberta (2007)Google Scholar
  10. 10.
    Land, A.H., Doig, A.G.: An automated method for solving discrete programming problems. Econometrica 28, 497–520 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Amer. Math. Soc. 64, 275–278 (1958)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Bhulai, S., Koole, G., Pot, A.: Simple Methods for Shift Scheduling in Multiskill Call Centers. Published online in Articles in Advance (January 4, 2008)Google Scholar
  13. 13.
    Ahrens, J.H., Ulrich, D.: Computer Methods for Sampling from Gamma, Beta, Poisson and Binomial Distributions. Computing 12(3), 223–246Google Scholar
  14. 14.
    Koole, G., Pot, S., Talim, J.: Routing heuristics for multi-skill call centers. In: Proceedings of the Winter Simulation Conference, pp. 1813–1816 (2003)Google Scholar
  15. 15.
    Pacheco, J., Millán-Ruiz, D., Vélez, J.L.: Neural Networks for Forecasting in a Multi-skill Call Centre. In: EANN 2009, London, UK, August 27-29 (2009)Google Scholar
  16. 16.
    Prügel-Bennett, A.: Finite Population Effects for Ranking and Tournament Selection. Complex Systems 12(2), 183–205 (2000)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Pearson, D.W., Steele, N.C., Albrecht, R.F.: Artificial neural nets and genetic algorithms. In: Proceedings of the international conference, Roanne, France (2003)Google Scholar
  18. 18.
    Chakraborty, B., Chaudhuri, P.: On The Use of Genetic Algorithm with Elitism in Robust and Nonparametric Multivariate Analysis. Austrian Journal of statistics 32 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • David Millán-Ruiz
    • 1
  • J. Ignacio Hidalgo
    • 2
  1. 1.Telefonica Research & DevelopmentMadridSpain
  2. 2.Complutense U. of MadridMadridSpain

Personalised recommendations