A Study of Memetic Search with Multi-parent Combination for UBQP

  • Zhipeng Lü
  • Jin-Kao Hao
  • Fred Glover
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6022)


We present a multi-parent hybrid genetic–tabu algorithm (denoted by GTA) for the Unconstrained Binary Quadratic Programming (UBQP) problem, by incorporating tabu search into the framework of genetic algorithm. In this paper, we propose a new multi-parent combination operator for generating offspring solutions. A pool updating strategy based on a quality-and-distance criterion is used to manage the population. Experimental comparisons with leading methods for the UBQP problem on 25 large public instances demonstrate the efficacy of our proposed algorithm in terms of both solution quality and computational efficiency.


UBQP Memetic Algorithm Tabu Search Genetic Algorithm multi-parent combination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McBride, R.D., Yormark, J.S.: An implicit enumeration algorithm for quadratic integer programming. Management Science 26, 282–296 (1980)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Krarup, J., Pruzan, A.: Computer aided layout design. Mathematical Programming Study 9, 75–94 (1978)MathSciNetGoogle Scholar
  3. 3.
    Gallo, G., Hammer, P., Simeone, B.: Quadratic knapsack problems. Mathematical Programming 12, 132–149 (1980)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Alidaee, B., Kochenberger, G.A., Ahmadian, A.: 0-1 quadratic programming approach for the optimal solution of two scheduling problems. International Journal of Systems Science 25, 401–408 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Chardaire, P., Sutter, A.: A decomposition method for quadratic zero-one programming. Management Science 41(4), 704–712 (1994)CrossRefGoogle Scholar
  6. 6.
    Phillips, A.T., Rosen, J.B.: A quadratic assignment formulation of the molecular conformation problem. Journal of Global Optimization 4, 229–241 (1994)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Pardalos, P., Rodgers, G.P.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Kochenberger, G.A., Glover, F., Alidaee, B., Rego, C.: A unified modeling and solution framework for combinatorial optimization problems. OR Spectrum 26, 237–250 (2004)CrossRefzbMATHGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)zbMATHGoogle Scholar
  10. 10.
    Boros, E., Hammer, P.L., Sun, R., Tavares, G.: A max-flow approach to improved lower bounds for quadratic 0-1 minimization. Discrete Optimization 5(2), 501–529 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Boros, E., Hammer, P.L., Tavares, G.: Local search heuristics for Quadratic Unconstrained Binary Optimization (QUBO). Journal of Heuristics 13, 99–132 (2007)CrossRefGoogle Scholar
  12. 12.
    Alkhamis, T.M., Hasan, M., Ahmed, M.A.: Simulated annealing for the unconstrained binary quadratic pseudo-boolean function. European Journal of Operational Research 108, 641–652 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Beasley, J.E.: Heuristic algorithms for the unconstrained binary quadratic programming problem. In: Working Paper, The Management School, Imperial College, London, England (1998)Google Scholar
  14. 14.
    Katayama, K., Narihisa, H.: Performance of simulated annealing-based heuristic for the unconstrained binary quadratic programming problem. European Journal of Operational Research 134, 103–119 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Glover, F., Kochenberger, G.A., Alidaee, B.: Adaptive memory tabu search for binary quadratic programs. Management Science 44, 336–345 (1998)CrossRefzbMATHGoogle Scholar
  16. 16.
    Palubeckis, G.: Multistart tabu search strategies for the unconstrained binary quadratic optimization problem. Annals of Operations Research 131, 259–282 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Palubeckis, G.: Iterated tabu search for the unconstrained binary quadratic optimization problem. Informatica 17(2), 279–296 (2006)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Glover, F., Lü, Z., Hao, J.K.: Diversification-driven tabu search for unconstrained binary quadratic problems. 4OR (2010); doi: 10.1007/s10288-009-0115-yGoogle Scholar
  19. 19.
    Merz, P., Freisleben, B.: Genetic algorithms for binary quadratic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 417–424. Morgan Kaufmann, San Francisco (1999)Google Scholar
  20. 20.
    Lodi, A., Allemand, K., Liebling, T.M.: An evolutionary heuristic for quadratic 0-1 programming. European Journal of Operational Research 119(3), 662–670 (1999)CrossRefzbMATHGoogle Scholar
  21. 21.
    Katayama, K., Tani, M., Narihisa, H.: Solving large binary quadratic programming problems by an effective genetic local search algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2000), pp. 643–650. Morgan Kaufmann, San Francisco (2000)Google Scholar
  22. 22.
    Borgulya, I.: An evolutionary algorithm for the binary quadratic problems. Advances in Soft Computing 2, 3–16 (2005)CrossRefGoogle Scholar
  23. 23.
    Amini, M., Alidaee, B., Kochenberger, G.A.: A scatter search approach to unconstrained quadratic binary programs. In: New Methods in Optimization, pp. 317–330. McGraw-Hill, New York (1999)Google Scholar
  24. 24.
    Merz, P., Katayama, K.: Memetic algorithms for the unconstrained binary quadratic programming problem. BioSystems 78, 99–118 (2004)CrossRefGoogle Scholar
  25. 25.
    Moscato, P.: Memetic algorithms: a short introduction. In: New Ideas in Optimization, pp. 219–234. Mcgraw-Hill Ltd., Maidenhead (1999)Google Scholar
  26. 26.
    Hoos, H., Stützle, T.: Stochastic Local Search Foundations and Applications. Morgan Kaufmann / Elsevier (2004)Google Scholar
  27. 27.
    Glover, F., Hao, J.K.: Efficient evaluations for solving large 0-1 unconstrained quadratic optimization problems. To appear in International Journal of Metaheuristics 1(1) (2009)Google Scholar
  28. 28.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)zbMATHGoogle Scholar
  29. 29.
    Syswerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 2–9 (1989)Google Scholar
  30. 30.
    Lü, Z., Hao, J.K.: A memetic algorithm for graph coloring. European Journal of Operational Research 203(1), 241–250 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  31. 31.
    Beasley, J.E.: Obtaining test problems via internet. Journal of Global Optimization 8, 429–433 (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhipeng Lü
    • 1
  • Jin-Kao Hao
    • 1
  • Fred Glover
    • 2
  1. 1.LERIAUniversité d’AngersAngers Cedex 01France
  2. 2.OptTek Systems, Inc.USA

Personalised recommendations