Advertisement

Characterizing Fault-Tolerance of Genetic Algorithms in Desktop Grid Systems

  • Daniel Lombraña González
  • Juan Luís Jiménez Laredo
  • Francisco Fernández de Vega
  • Juan Julián Merelo Guervós
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6022)

Abstract

This paper presents a study of the fault-tolerant nature of Genetic Algorithms (GAs) on a real-world Desktop Grid System, without implementing any kind of fault-tolerance mechanism. The aim is to extend to parallel GAs previous works tackling fault-tolerance characterization in Genetic Programming. The results show that GAs are able to achieve a similar quality in results in comparison with a failure-free system in three of the six scenarios under study despite the system degradation. Additionally, we show that a small increase on the initial population size is a successful method to provide resilience to system failures in five of the scenarios. Such results suggest that Paralle GAs are inherently and naturally fault-tolerant.

Keywords

Fault Tolerance Desktop Grid Initial Population Size Parallel Genetic Algorithm Host Availability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tomassini, M.: Spatially Structured Evolutionary Algorithms. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  2. 2.
    Anderson, D.: Boinc: a system for public-resource computing and storage. In: Proceedings of Fifth IEEE/ACM International Workshop on Grid Computing, 2004, pp. 4–10 (2004)Google Scholar
  3. 3.
    Desell, T., Szymanski, B., Varela, C.: An asynchronous hybrid genetic-simplex search for modeling the Milky Way galaxy using volunteer computing. In: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 921–928. ACM, New York (2008)CrossRefGoogle Scholar
  4. 4.
    Schroeder, B., Gibson, G.A.: A Large-Scale Study of Failures in High-Performance Computing Systems. In: Proc. of the International Conference on Dependable Systems, pp. 249–258 (2006)Google Scholar
  5. 5.
    Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: Proceedings of the 6th ACM SIGCOMM on Internet measurement (IMC 2006), pp. 189–202. ACM Press, New York (2006)CrossRefGoogle Scholar
  6. 6.
    Gartner, F.C.: Fundamentals of fault-tolerant distributed computing in asynchronous environments. ACM Computing Surveys 31(1), 1–26 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Lombraña, D., Fernández, F.: Analyzing fault tolerance on parallel genetic programming by means of dynamic-size populations. In: Congress on Evolutionary Computation, Singapore, September 2007, vol. 1, pp. 4392–4398 (2007)Google Scholar
  8. 8.
    Hidalgo, I., Fernández, F., Lanchares, J., Lombraña, D.: Is the island model fault tolerant? In: Genetic and Evolutionary Computation Conference, London, England, July 2007, vol. 2, p. 1519 (2007)Google Scholar
  9. 9.
    González, D.L., de Vega, F.F., Casanova, H.: Characterizing fault tolerance in genetic programming. In: Workshop on Bio-Inspired Algorithms for Distributed Systems, Barcelona, Spain, pp. 1–10 (2009)Google Scholar
  10. 10.
    Ghosh, S.: Distributed systems: an algorithmic approach. Chapman & Hall/CRC, Boca Raton (2006)Google Scholar
  11. 11.
    Trujillo, L., Olague, G.: Automated Design of Image Operators that Detect Interest Points, vol. 16, pp. 483–507. MIT Press, Cambridge (2008)Google Scholar
  12. 12.
    Cantu-Paz, E.: A survey of parallel genetic algorithms. Calculateurs Paralleles, Reseaux et Systems Repartis 10(2), 141–171 (1998)Google Scholar
  13. 13.
    Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6(5), 443–462 (2002)CrossRefGoogle Scholar
  14. 14.
    de la, O.F.C., Guisado, G.L., Lombraña, D., Fernández, F.: Una herramienta de programación genética paralela que aprovecha recursos públicos de computación. In: V Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, Tenerife, Spain, February 2007, vol. 1, pp. 167–173 (2007)Google Scholar
  15. 15.
  16. 16.
    Lombraña, D., Fernández, F., Trujillo, L., Olague, G., Cárdenas, M., Araujo, L., Castillo, P., Sharman, K., Silva, A.: Interpreted applications within boinc infrastructure. In: Ibergrid 2008, Porto, Portugal, May 2008, pp. 261–272 (2008)Google Scholar
  17. 17.
    González, D.L., de Vega, F.F., Trujillo, L., Olague, G., Araujo, L., Castillo, P., Merelo, J.J., Sharman, K.: Increasing gp computing power for free via desktop grid computing and virtualization. In: Proceedings of the 17th Euromicro Conference on Parallel, Distributed and Network-based Processing, Weimar, Germany, February 2009, pp. 419–423 (2009)Google Scholar
  18. 18.
    Laredo, J.L.J., Eiben, A.E., van Steen, M., Merelo, J.J.: On the run-time dynamics of a peer-to-peer evolutionary algorithm. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 236–245. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Laredo, J.L.J., Castillo, P.A., Mora, A.M., Merelo, J.J., Fernandes, C.: Resilience to churn of a peer-to-peer evolutionary algorithm. Int. J. High Performance Systems Architecture 1(4), 260–268 (2008)CrossRefGoogle Scholar
  20. 20.
    Kondo, D., Fedak, G., Cappello, F., Chien, A., Casanova, H.: Characterizing resource availability in enterprise desktop grids, vol. 23, pp. 888–903. Elsevier, Amsterdam (2007)Google Scholar
  21. 21.
    Ackley, D.H.: A connectionist machine for genetic hillclimbing. Kluwer Academic Publishers, Norwell (1987)Google Scholar
  22. 22.
    Deb, K., Goldberg, D.E.: Analyzing deception in trap functions. In: Whitley, L.D. (ed.) FOGA, pp. 93–108. Morgan Kaufmann, San Francisco (1992)Google Scholar
  23. 23.
    Thierens, D.: Scalability problems of simple genetic algorithms. Evolutionary Computation 7(4), 331–352 (1999)CrossRefGoogle Scholar
  24. 24.
    Crawley, M.J.: Statistics, An Introduction using R. Wiley, Chichester (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daniel Lombraña González
    • 1
  • Juan Luís Jiménez Laredo
    • 2
  • Francisco Fernández de Vega
    • 1
  • Juan Julián Merelo Guervós
    • 2
  1. 1.University of ExtremaduraSpain
  2. 2.University of Granada. ATC-ETSIITGranadaSpain

Personalised recommendations