Advertisement

Time-Dependent Order and Distribution Policies in Supply Networks

  • S. Göttlich
  • M. Herty
  • Ch. Ringhofer
Chapter
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 15)

Summary

The dynamic of a production network is modeled by a coupled system of ordinary differential delay equations. Distribution and order policies are determined by an optimization problem for maximizing the profit of the production line.

Keywords

Supply Chain Money Supply Supply Network Production Network Delay Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armbruster, D., Degond, P., Ringhofer, Ch.: SIAM J. Appl. Math. 66, 896–920 (2006)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B., Stiglitz, J.E.: J. Eco. Dyn. Control 31, 2061–2084 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Daganzo, C.: A Theory of Supply Chains. Springer, Berlin (2003)zbMATHGoogle Scholar
  4. 4.
    Fügenschuh, A., Göttlich, S., Herty, M., Klar, A., Martin, A.: SIAM J. Sci. Comp. 30, 1490–1507 (2008)zbMATHGoogle Scholar
  5. 5.
    Göttlich, S., Herty, M., Klar, A.: Comm. Math. Sci. 3, 545–559 (2005)zbMATHGoogle Scholar
  6. 6.
    Herty, M., Ringhofer, Ch. Physica A 380, 651–664 (2007)CrossRefGoogle Scholar
  7. 7.
    Helbing, D., Armbruster, D., Mikhailov, A., Lefeber, E.L.: Physica A 363, 1–60 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of MathematicsTU KaiserslauternKaiserslauternGermany
  2. 2.Department of MathematicsRWTH Aachen UniversityAachenGermany
  3. 3.Department of MathematicsArizona State UniversityTempeUSA

Personalised recommendations