Time-Dependent Order and Distribution Policies in Supply Networks

Chapter
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 15)

Summary

The dynamic of a production network is modeled by a coupled system of ordinary differential delay equations. Distribution and order policies are determined by an optimization problem for maximizing the profit of the production line.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armbruster, D., Degond, P., Ringhofer, Ch.: SIAM J. Appl. Math. 66, 896–920 (2006)MATHMathSciNetGoogle Scholar
  2. 2.
    Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B., Stiglitz, J.E.: J. Eco. Dyn. Control 31, 2061–2084 (2007)MATHCrossRefGoogle Scholar
  3. 3.
    Daganzo, C.: A Theory of Supply Chains. Springer, Berlin (2003)MATHGoogle Scholar
  4. 4.
    Fügenschuh, A., Göttlich, S., Herty, M., Klar, A., Martin, A.: SIAM J. Sci. Comp. 30, 1490–1507 (2008)MATHGoogle Scholar
  5. 5.
    Göttlich, S., Herty, M., Klar, A.: Comm. Math. Sci. 3, 545–559 (2005)MATHGoogle Scholar
  6. 6.
    Herty, M., Ringhofer, Ch. Physica A 380, 651–664 (2007)CrossRefGoogle Scholar
  7. 7.
    Helbing, D., Armbruster, D., Mikhailov, A., Lefeber, E.L.: Physica A 363, 1–60 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of MathematicsTU KaiserslauternKaiserslauternGermany
  2. 2.Department of MathematicsRWTH Aachen UniversityAachenGermany
  3. 3.Department of MathematicsArizona State UniversityTempeUSA

Personalised recommendations