Skip to main content

Comparison of Bagging, Boosting and Stacking Ensembles Applied to Real Estate Appraisal

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5991))

Abstract

The experiments, aimed to compare three methods to create ensemble models implemented in a popular data mining system called WEKA, were carried out. Six common algorithms comprising two neural network algorithms, two decision trees for regression, linear regression, and support vector machine were used to construct ensemble models. All algorithms were employed to real-world datasets derived from the cadastral system and the registry of real estate transactions. Nonparametric Wilcoxon signed-rank tests to evaluate the differences between ensembles and original models were conducted. The results obtained show there is no single algorithm which produces the best ensembles and it is worth to seek an optimal hybrid multi-model solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banfield, R.E., et al.: A Comparison of Decision Tree Ensemble Creation Techniques. IEEE Trans. on Pattern Analysis and Machine Intelligence 29(1), 173–180 (2007)

    Article  Google Scholar 

  2. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Breiman, L.: Stacked Regressions. Machine Learning 24(1), 49–64 (1996)

    MATH  MathSciNet  Google Scholar 

  4. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity Creation Methods: A Survey and Categorisation. Journal of Information Fusion 6(1), 5–20 (2005)

    Article  Google Scholar 

  5. Büchlmann, P., Yu, B.: Analyzing bagging. Annals of Statistics 30, 927–961 (2002)

    Article  MathSciNet  Google Scholar 

  6. Chawla, N.V., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: Learning Ensembles From Bites: A Scalable and Accurate Approach. J. of Mach. Learn. Res. 5, 421–451 (2004)

    MathSciNet  Google Scholar 

  7. Cordón, O., Quirin, A.: Comparing Two Genetic Overproduce-and-choose Strategies for Fuzzy Rule-based Multiclassification Systems Generated by Bagging and Mutual Information-based Feature Selection. Int. J. Hybrid Intelligent Systems (2009) (in press)

    Google Scholar 

  8. Cunningham, S.J., Frank, E., Hall, M., Holmes, G., Trigg, L., Witten, I.H.: WEKA: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, New Zealand (2005)

    Google Scholar 

  9. Freund, Y., Schapire, R.E.: Decision-theoretic generalization of on-line learning and an application to boosting. J. Computer and System Sciences 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Graczyk, M., Lasota, T., Trawiński, B.: Comparative Analysis of Premises Valuation Models Using KEEL, RapidMiner, and WEKA. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 800–812. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)

    Article  Google Scholar 

  12. Hashem, S.: Optimal linear combinations of neural networks. Neural Net. 10(4), 599–614 (1997)

    Article  Google Scholar 

  13. Hernandez-Lobato, D., Martinez-Munoz, G., Suarez, A.: Pruning in ordered regression bagging ensembles. In: Yen, G.G. (ed.) Proceedings of the IEEE World Congress on Computational Intelligence, pp. 1266–1273 (2006)

    Google Scholar 

  14. Ho, K.T.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  15. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Advances in Neural Inf. Proc. Systems, pp. 231–238. MIT Press, Cambridge (1995)

    Google Scholar 

  16. Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of Evolutionary Optimization Methods of TSK Fuzzy Model for Real Estate Appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)

    MATH  Google Scholar 

  17. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Chichester (2004)

    Book  MATH  Google Scholar 

  18. Lasota, T., Mazurkiewicz, J., Trawiński, B., Trawiński, K.: Comparison of Data Driven Models for the Validation of Residential Premises Using KEEL. International Journal of Hybrid Intelligent Systems (2009) (in press)

    Google Scholar 

  19. Liu, Y., Yao, X.: Ensemble learning via negative correlation. Neural Net. 12, 1399–1404 (1999)

    Article  Google Scholar 

  20. Margineantu, D.D., Dietterich, T.G.: Pruning Adaptive Boosting. In: Proc. 14th Int. Conf. Machine Learning, pp. 211–218 (1997)

    Google Scholar 

  21. Opitz, D., Shavlik, J.W.: Actively searching for an effective neural network ensemble. Connection Science 8(3-4), 337–353 (1996)

    Article  Google Scholar 

  22. Polikar, R.: Ensemble Learning. Scholarpedia 4(1), 2776 (2009)

    Article  Google Scholar 

  23. Prodromidis, A.L., Chan, P.K., Stolfo, S.J.: Meta-Learning in a Distributed Data Mining System: Issues and Approaches. In: Kargupta, H., Chan, P.K. (eds.) Advances of Distributed Data Mining. AAAI Press, Menlo Park (2000)

    Google Scholar 

  24. Rokach, L.: Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography. Comp. Stat. and Data Anal. 53, 4046–4072 (2009)

    Article  MATH  Google Scholar 

  25. Schapire, R.E.: The Strength of Weak Learnability. Mach. Learning 5(2), 197–227 (1990)

    Google Scholar 

  26. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  27. Wolpert, D.H.: Stacked Generalization. Neural Networks 5(2), 241–259 (1992)

    Article  Google Scholar 

  28. Yao, X., Liu, Y.: Making Use of Population Information in Evolutionary Artificial Neural Networks. IEEE Trans. Systems, Man, and Cybernetics, Part B 28(3), 417–425 (1998)

    MathSciNet  Google Scholar 

  29. Zhou, Z.H., Wu, J., Tang, W.: Ensembling Neural Networks: Many Could Be Better Than All. Artificial Intelligence 137, 239–263 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Graczyk, M., Lasota, T., Trawiński, B., Trawiński, K. (2010). Comparison of Bagging, Boosting and Stacking Ensembles Applied to Real Estate Appraisal. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds) Intelligent Information and Database Systems. ACIIDS 2010. Lecture Notes in Computer Science(), vol 5991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12101-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12101-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12100-5

  • Online ISBN: 978-3-642-12101-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics