Abstract
This article contains a short analysis of applying three metaheuristic local search algorithms to solve the problem of allocating two-dimensional tasks on a two-dimensional processor mesh in a period of time. The primary goal is to maximize the level of mesh utilization. To achieve this task we adapted three algorithms: Tabu Search, Simulated Annealing and Random Search, as well as created a helper algorithm Dumb Fit and adapted another helper algorithm – First Fit. To measure the algorithms’ efficiency we introduced our own evaluating function Cumulative Effectiveness and a derivative Utilization Factor. Finally, we implemented an experimentation system to test these algorithms on different sets of tasks to allocate. In this article there is a short analysis of series of experiments conducted on three different classes of task sets: small tasks, mixed tasks and large tasks.
Keywords
- Network structure
- task allocation
- Tabu Search
- Simmulated Annealing
- experimentation system
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Goh, L.K., Veeravalli, B.: Design and Performance Evaluation of Combined First-Fit Task Allocation and Migration Strategies in Mesh Multiprocessor Systems. Parallel Computing 34, 508–520 (2008)
Buzbee, B.L.: The Efficiency of Parallel Processing. Frontiers of Supercomputing, Los Alamos (1983)
Glover, F.: Tabu Search – part I. ORSA Journal on Computing 1(3) (1989)
Kirkpatrick, S., Gelatti, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science New Series 220(4598), 671–680 (1983)
Granville, V., Krivanek, M., Rasson, J.P.: Simulated Annealing: A Proof of Convergence. IEEE Trans. on Pattern Analysis and Machine Intelligence 16, 652–656 (1994)
Laarhoven, J.M., Emile, H., Aarts, L.: Simulated Annealing: Theory and Applications. Springer, Heidelberg (1987)
Glover, F., Kochenberger, G.A.: Handbook of Metaheuristics. Springer, Heidelberg (2002)
Byung, S., Das, C.R.: A Fast and Efficient Processor Allocation Scheme for Mesh Connected Multi-computers. IEEE Trans. on Computers 1, 46–59 (2002)
Koszalka, L.: Simulation-based Evaluation of Distributed Mesh Allocation Algorithms. In: Thulasiraman, P., He, X., Xu, T.L., Denko, M.K., Thulasiram, R.K., Yang, L.T. (eds.) ISPA Workshops 2007. LNCS, vol. 4743, pp. 335–344. Springer, Heidelberg (2007)
Koszalka, L., Lisowski, D., Pozniak-Koszalka, I.: Comparison of Allocation Algorithms for Mesh Networks with Multistage Experiment. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3984, pp. 58–67. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kmiecik, W., Wojcikowski, M., Koszalka, L., Kasprzak, A. (2010). Task Allocation in Mesh Connected Processors with Local Search Meta-heuristic Algorithms. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds) Intelligent Information and Database Systems. ACIIDS 2010. Lecture Notes in Computer Science(), vol 5991. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12101-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-642-12101-2_23
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12100-5
Online ISBN: 978-3-642-12101-2
eBook Packages: Computer ScienceComputer Science (R0)
