Skip to main content

Ballistic Transistors: From Planar to Cylindrical Nanowire Transistors

  • Chapter
  • First Online:
Trends in Nanophysics

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1114 Accesses

Abstract

Planar nanoscale transistors and cylindrical nanowire transistors are analyzed in the framework of coherent transport. The multi-terminal devices are modeled in the Landauer-Büttiker formalism, which is efficiently implemented using the R-matrix approach. For the planar case, the linear regime reveals Fabry-Perot type resonances in the source-drain conductance, while in the nonlinear regime a quantum mechanism for the drain current saturation is demonstrated. The advantages of new geometries, like the cylindrical nanowire transistors, are discussed in the context of self-consistent calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Referneces

  1. D.K. Ferry, S.M. Goodnick, Transport in nanostructures (Cambridge University Press, UK, 1999)

    Google Scholar 

  2. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, UK, 1995)

    Google Scholar 

  3. C. Weisbuch, B. Vinter, Quantum semiconductor structures (Academic, New York, NY, 1991)

    Google Scholar 

  4. W.C.J. Magnus, W.J. Schoenmaker, Quantum Transport in Sub-Micron Devices, Springer Series in Solid-State Sciences (Springer, Berlin, 2002) p. 137

    Google Scholar 

  5. R. Martel et al., Appl. Phys. Lett. 73, 2447 (1998)

    Article  CAS  Google Scholar 

  6. J. Appenzeller et al., Phys. Rev. Lett. 92, 226802 (2004)

    Article  CAS  Google Scholar 

  7. B. Yu, Tech. Dig. -Int. Electron Devices Meet. 251 (2002)

    Google Scholar 

  8. Y-.K. Choi et al., IEEE Electron Device Lett. 21, 254 (2000)

    Article  CAS  Google Scholar 

  9. I. Shorubalko et al., Appl Phys. Lett. 83, 2369 (2003)

    Article  CAS  Google Scholar 

  10. S.H. Son et al., J. Appl. Phys. 96, 704 (2004)

    Article  CAS  Google Scholar 

  11. K.H. Cho et al., Appl. Phys. Lett. 92, 052102 (2008)

    Article  Google Scholar 

  12. T. Bryllert, L.-E. Wernersson, T.L., L. Samuelson, Nanotechnology 17, S227 (2006)

    Google Scholar 

  13. G.A. Nemnes, L. Ion, S. Antohe, J. Appl. Phys. 106, 113714 (2009)

    Article  Google Scholar 

  14. R. Venugopal et al., J. Appl. Phys. 95, 292 (2004)

    Article  CAS  Google Scholar 

  15. M.J. Gilbert et al., J. Appl. Phys. 95, 7954 (2004)

    Article  CAS  Google Scholar 

  16. J. Guo et al., Tech. Dig. -Int. Electron Devices Meet., 711 (2002)

    Google Scholar 

  17. A. Rahman et al., IEEE Trans. Electron Devices 50, 1853 (2003)

    Article  CAS  Google Scholar 

  18. K. Natori, J. Appl. Phys. 76, 4879 (1994)

    Article  CAS  Google Scholar 

  19. K. Natori, IEICE Trans. Electron. E84-C, 1029 (2001)

    Google Scholar 

  20. J. Lusakowski et al., J. Appl. Phys. 101, 114511 (2007)

    Article  Google Scholar 

  21. M.D. Croitoru et al., J. Appl. Phys. 93, 1230 (2003)

    Article  CAS  Google Scholar 

  22. M. Fischetti et al., Tech. Dig. -Int. Electron Devices Meet. 467, (2003)

    Google Scholar 

  23. A. Svizhenko et al., J. Appl. Phys. 91, 2343 (2002)

    Article  CAS  Google Scholar 

  24. R. Venugopal et al., J. Appl. Phys. 92, 3730 (2002)

    Article  CAS  Google Scholar 

  25. G.A. Nemnes et al., J. Appl. Phys. 96, 596 (2004)

    Article  CAS  Google Scholar 

  26. G.A. Nemnes et al., J. Appl. Phys. 98, 084308 (2005)

    Article  Google Scholar 

  27. M. Buettiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  Google Scholar 

  28. E.P. Wigner, L. Eisenbud, Phys. Rev. 72, 29 (1947)

    Article  CAS  Google Scholar 

  29. L. Smrcka, Superlattices and Microstructures 8, 221 (1990)

    Article  Google Scholar 

  30. G.A. Nemnes, U. Wulf, P.N. Racec, J. Appl. Phys., 96, (1) 596 (2004) Reprinted with permission from, Copyright 2004, American Institute of Physics.

    Article  CAS  Google Scholar 

  31. B.J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988)

    Article  Google Scholar 

  32. G.A. Nemnes, U. Wulf, P.N. Racec, J. Appl. Phys., 98, (8) 084308, (2005) Reprinted with permission from Copyright 2005, American Institute of Physics.

    Article  Google Scholar 

  33. A. Hartstein, Appl. Phys. Lett. 59, 2028 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.A. Nemnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer –Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nemnes, G., Wulf, U., Ion, L., Antohe, S. (2010). Ballistic Transistors: From Planar to Cylindrical Nanowire Transistors. In: Bârsan, V., Aldea, A. (eds) Trends in Nanophysics. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12070-1_6

Download citation

Publish with us

Policies and ethics