Skip to main content

GaN and InN Nanowires: Growth and Optoelectronic Properties

  • Chapter
  • First Online:
Trends in Nanophysics

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Self-assembled GaN and InN nanowires (NWs) were synthesized by radio frequency Plasma-Assisted Molecular Beam Epitaxy (PAMBE) without external catalyst. NWs of micrometers length and diameter in the range of 20–200 nm are fabricated using this method under N-rich conditions. Driving mechanisms of the NW nucleation and the growth are discussed. The NWs have been investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and photoluminescence (PL). Electric and photoelectric measurements on single wire devices have been performed as well. We establish that the dark, Ultraviolet (UV) photo-current and band-edge absorption tails in GaN NWs are strongly dependent on wire diameter. A model of surface Fermi level pinning and Franz-Keldysh effect in carrier depletion region at wire surface were used to explain the observed behaviors. InN NWs show infrared (IR) photoluminescence strongly dependent on the growth parameters. High electron concentration of 1018 – 1019 cm−3 was evaluated from line shape analysis of PL spectra. The Fermi level pinning at the surface corresponds to a surface accumulation layer. To modify the surface of InN NWs, core-shell InN/GaN NWs were grown. In this paper we focus on the influence of surface effects on the growth and properties of GaN and InN nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Referneces

  1. J. Wu, J. Appl. Phys. 106, 011101 (2009)

    Article  Google Scholar 

  2. E.D. Minot, F. Kelkensberg, M. van Kouwen, J.A. van Dam, L.P. Kouwenhoven, V. Zwiller, M.T. Borgstrom, O. Wunnicke, M.A. Verheijen, E. Bakkers, Nano Lett. 7, 367 (2007)

    Article  CAS  Google Scholar 

  3. Y. Huang, X. Duan, C.M. Lieber, Small 1, 142 (2005)

    Article  CAS  Google Scholar 

  4. O. Hayden, R. Agarwal, C.M. Lieber, Nat. Mater. 5, 352 (2006)

    Article  CAS  Google Scholar 

  5. A.B. Greytak, C.J. Barrelet, Y. Li, C.M. Lieber, Appl. Phys. Lett. 87, 151103 (2005)

    Article  Google Scholar 

  6. J.C. Johnson, H.J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, Nat. Mater. 1, 106 (2002)

    Article  CAS  Google Scholar 

  7. H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. 14, 158 (2002)

    Article  CAS  Google Scholar 

  8. K. Keem, H. Kim, G.T. Kim, J.S. Lee, B. Min, K. Cho, M.Y. Sung, S. Kim, App. Phys. Lett. 84, 4376 (2004)

    Article  CAS  Google Scholar 

  9. F. Patolsky, G. Zheng, C.M. Lieber, Nanomedicine 1, 51 (2006)

    Article  CAS  Google Scholar 

  10. F. Patolsky, G.F. Zheng, C.M. Lieber, Anal. Chem. 78, 4260 (2006)

    Article  CAS  Google Scholar 

  11. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149 (2003)

    Article  CAS  Google Scholar 

  12. Y. Huang, X. Duan, Y. Cui, C.M. Lieber, Nano Lett. 2, 101 (2002)

    Article  CAS  Google Scholar 

  13. D.M. Bagnall, M. Boreland, Photovoltaic Technol. 36, 4390 (2008)

    Google Scholar 

  14. J. Chen, G. Cheng, E. Stern, M.A. Reed, P. Avouris, Nano Lett. 7, 2276 (2007)

    Article  CAS  Google Scholar 

  15. C.M. Lieber, Z.L. Wang, MRS Bull. 32, 99 (2007)

    Article  CAS  Google Scholar 

  16. G.M. Jones, B.H. Hu, C.H. Yang, M.J. Yang, Y.B. Lyanda-Geller, Physica E 34, 612 (2006)

    Article  CAS  Google Scholar 

  17. R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A.v.d. Hart, T. Stoica, H. Lüth, Nano Lett. 5, 981 (2005)

    Article  CAS  Google Scholar 

  18. J. Wensorra, K.M. Indlekofer, M.I. Lepsa, A. Fo1rster, H. Lüth, Nano Lett. 5, 2470 (2005)

    Article  CAS  Google Scholar 

  19. J. Ebbecke, S. Maisch, A. Wixforth, R. Calarco, R. Meijers, M. Marso, H. Lüth, Nanotechnology 19, 275708 (2008)

    Article  CAS  Google Scholar 

  20. M.A. Reed, R.J. Randall, R.J. Aggarwal, R.J. Matyi, T.M. Moore, A.E. Wetsel, Phys. Rev. Lett. 60, 535 (1988)

    Article  CAS  Google Scholar 

  21. M. Tewordt, L. Martín-Moreno, V.J. Law, M.J. Kelly, R. Newbury, M. Pepper, D.A. Ritchie, J.E.F. Frost, G.A.C. Jones, Phys. Rev. B 46, 3948 (1992)

    Article  CAS  Google Scholar 

  22. D.G. Austing, T. Honda, S. Tarucha, Semicond. Sci. Technol. 11, 388 (1996)

    Article  CAS  Google Scholar 

  23. A. Randame, G. Faini, H. Launois, Z. Phys. B 85, 389 (1991)

    Article  Google Scholar 

  24. T. Schmidt, M. Tewordt, R.H. Blick, R.J. Haug, D. Pfannkuche, K. von Klitzing, A. Förster, H. Lüth, Phys. Rev. B 51, 5570 (1995)

    Article  CAS  Google Scholar 

  25. M. Griebel, K.M. Indlekofer, A. Förster, H. Lüth, J. Appl. Phys. 84, 6718 (1998)

    Article  CAS  Google Scholar 

  26. J. Wensorra, M.I. Lepsa, K.M. Indlekofer, A. Förster, P. Jaschinsky, B. Voigtländer, G. Pirug, H. Lüth, Phys. Stat. Sol. (a) 203, 3559 (2006)

    Article  CAS  Google Scholar 

  27. V. Mamutin, Tech. Phys. Lett. 25, 741 (1999)

    Article  CAS  Google Scholar 

  28. E. Calleja, M.A. Sanchez-Garcia, F.J. Sanchez, F. Calle, F.B. Naranjo, E. Munoz, U. Jahn, K. Ploog, Phys. Rev. B 62, 16826 (2000)

    Article  CAS  Google Scholar 

  29. R. Meijers, T. Richter, R. Calarco, T. Stoica, H.P. Bochem, M. Marso, H. Lüth, J. Cryst. Growth 289, 381 (2006)

    Article  CAS  Google Scholar 

  30. S. Biswas, S. Kar, T. Ghoshal, V.D. Ashok, S. Chakrabarti, S. Chaudhuri, Mater. Res. Bull. 42, 428 (2007)

    Article  CAS  Google Scholar 

  31. H.Y. Chen, H.W. Lin, C.H. Shen, S. Gwo, Appl. Phys. Lett. 89, 243105 (2006)

    Article  Google Scholar 

  32. K.A. Bertness, A. Roshko, L.M. Mansfield, T.E. Harvey, N.A. Sanford, J. Cryst. Growth 300, 94 (2007)

    Article  CAS  Google Scholar 

  33. J.F. Fälth, S.K. Davidsson, X.Y. Liu, T.G. Andersson, Thin Solid Films 515, 603 (2006)

    Article  Google Scholar 

  34. L. Cerutti, J. Ristic, S. Fernandez-Garrido, E. Calleja, A. Trampert, K.H. Ploog, S. Lazic, J.M. Calleja, Appl. Phys. Lett. 88, 213114 (2006)

    Article  Google Scholar 

  35. R.K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, H. Lüth, Appl. Phys. Lett. 90, 123117 (2007)

    Article  Google Scholar 

  36. R. Calarco, R.J. Meijers, R.K. Debnath, T. Stoica, E. Sutter, H. Lüth, Nano Lett. 7, 2248 (2007)

    Article  CAS  Google Scholar 

  37. A. Trampert, J. Ristic, U. Jahn, E. Calleja, K.H. Ploog, Microsc. Semicond. Mater. Conf., Cambridge Inst. Phys. Conf. Ser. 2003, No.180, p. 167

    Google Scholar 

  38. T. Stoica, E. Sutter, R.J. Meijers, R.K. Debnath, R. Calarco, H. Lüth, D. Grützmacher, Small 4, 751 (2008)

    Article  CAS  Google Scholar 

  39. Y.L. Chang, F. Li, A. Fatehi Z. Mi, Nanotechnology 20, 345203 (2009)

    Article  Google Scholar 

  40. T. Kuykendall, S. Aloni, I.J. La Plante, T. Mokari1, Int. J. Photoenergy, 2009, 767951 (2009)

    Article  Google Scholar 

  41. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  CAS  Google Scholar 

  42. L. Jensen, M. Björk, S. Jeppesen, A. Persson, B. Ohlsson, L. Samuelson, Nano Lett. 4, 1961 (2004)

    Article  CAS  Google Scholar 

  43. T. Zywietz, J. Neugebauer, M. Scheffler, Appl. Phys. Lett. 73, 487 (1998)

    Article  CAS  Google Scholar 

  44. R.K. Debnath, T. Stoica, A. Besmehn, K. Jeganathan, E. Sutter, R. Meijers, H. Lüth, R. Calarco, J. Cryst. Growth 311, 3389 (2009)

    Article  CAS  Google Scholar 

  45. T. Stoica, R. Meijers, R. Calarco, T. Richter, H. Lüth, J. Cryst. Growth 290, 241 (2006)

    Article  CAS  Google Scholar 

  46. R. Calarco, M.Marso, Appl. Phys. A 87, 499 (2007)

    Article  CAS  Google Scholar 

  47. L. Polenta, M. Rossi, A. Cavallini, R. Calarco, M. Marso, R. Meijers, T. Richter, T. Stoica, H. Lüth, ACS Nano 2, 287 (2008)

    Article  CAS  Google Scholar 

  48. K. Jeganathan, R.K. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grützmacher, H. Lüth, J. Appl. Phys. 105, 123707 (2009)

    Article  Google Scholar 

  49. A. Cavallini, L. Polenta, M. Rossi, T. Stoica, R. Calarco, R.J. Meijers, T. Richter, H. Lüth, Nano Lett. 7, 2166 (2007)

    Article  CAS  Google Scholar 

  50. W. Franz, Naturforschung 13, 484 (1958)

    Google Scholar 

  51. L. Keldysh, Sov. Phys. JETP 7, 788 (1958)

    Google Scholar 

  52. M. Bertelli, P. Löptien, M. Wenderoth, A. Rizzi, R.G. Ulbrich, M.C. Righi, A. Ferretti, L. Martin-Samos, C.M. Bertoni, A. Catellani, Phys. Rev. B 80, 115324 (2009)

    Article  Google Scholar 

  53. S.L. Rumyantsev, M.S. Shur, M.E. Levinshtein, A. Motayed, A.V. Davydov, J. Appl. Phys. 103, 064501 (2008)

    Article  Google Scholar 

  54. T. Stoica, R.J. Meijers, R. Calarco, T. Richter, E. Sutter, H. Lüth, Nano Lett. 6, 1541 (2006)

    Article  CAS  Google Scholar 

  55. V. Yu. Davydov, A.A. Klochikhin, Semiconductors 38, 897 (2004)

    Google Scholar 

  56. H. Lüth, Surface and Interfaces of Solid Materials, (Springer, Berlin, 1995)

    Google Scholar 

  57. C.G. Van de Walle, D. Segev, J. Appl. Phys. 101, 081704 (2007)

    Article  Google Scholar 

  58. P.D.C. King, T.D. Veal, C.F. McConville, F. Fuchs, J. Furthmuller, F. Bechstedt, P. Schley, R. Goldhahn, J. Schoermann, D.J. As, K. Lischka, D. Muto, H. Naoi, Y. Nanishi, H. Lu, W.J. Schaff, Appl. Phys. Lett. 91, 092101 (2007)

    Article  Google Scholar 

  59. L. Wang, D. Wang, P.M. Asbeck, Solid-State Electron 50, 1732 (2006)

    Article  CAS  Google Scholar 

  60. C. Blömers, T. Schäpers, T. Richter, R. Calarco, H. Lüth, M. Marso, Appl. Phys. Lett. 92, 132101 (2008)

    Article  Google Scholar 

  61. C. Blömers, T. Schäpers, T. Richter, R. Calarco, H. Lüth, M. Marso, Phys. Rev. B 77, 201301 (2008)

    Article  Google Scholar 

  62. T. Richter, C. Blömers, H. Lüth, R. Calarco, M. Indlekofer, M. Marso, T. Schäpers, Nano Lett. 8, 2834 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank K. H. Deussen for technical support. This work was financially supported by the German Ministry of Education and Research project “EPHQUAM” and performed under the auspices of the U.S. Department of Energy under contract No. DE-AC02-98CH1-886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toma Stoica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer –Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stoica, T., Sutter, E., Calarco, R. (2010). GaN and InN Nanowires: Growth and Optoelectronic Properties. In: Bârsan, V., Aldea, A. (eds) Trends in Nanophysics. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12070-1_4

Download citation

Publish with us

Policies and ethics