Skip to main content

Magnetic Configuration and Relaxation in Iron Based Nano-Particles: A Mössbauer Approach

  • Chapter
  • First Online:
Trends in Nanophysics

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1094 Accesses

Abstract

The difficulty to stabilize a definite crystalline structure or phase, due to a large gradient of defects along the particle diameter, is unfortunately specific to particles of nanometer size. Therefore, atypical spin configurations and magnetic anisotropies as well as enhanced magnetic relaxations via thermal excitations are expected in systems of fine nano-particles. The actual work reports on various possibilities for a comprehensive characterization of the magnetic configuration and magnetic relaxation mechanisms of nano-particles, by corroborating the powerful method of Mössbauer spectroscopy with complementary magnetic and structural techniques. The capabilities of temperature and field dependent Mössbauer spectroscopy to provide valuable information about spin blocking temperatures, effective anisotropy constants, amount of uncompensated spins inside of particle and magnetic phase composition are critically discussed for both powder like systems and nano-particles dispersed in different solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Referneces

  1. N.N. Greenwood, T.C. Gibb, Mössbauer Spectroscopy (Chapman and Hall, London 1971)

    Book  Google Scholar 

  2. R.M. Cornell, U. Schwertman, The Iron Oxides (VCH, Weinheim 1996), p. 198

    Google Scholar 

  3. S.M. Yusuf, J.M. De Teresa, M.D. Mukadam, J. Kohlbrecher, M.R. Ibarra, J. Arbiol, P. Sharma, S.K. Kulshreshtha, Phys. Rev. B 74, 224428 (2006)

    Article  Google Scholar 

  4. P. Dutta, A. Manivannan, M.S. Seehra, N. Shah, G.P. Huffman, J. Appl. Phys. 99, 08H105 (2006)

    Article  Google Scholar 

  5. P. Dallas, N. Moutis, E. Devlin, D. Niarchos, D. Petridis, Nanotechnology 17, 5019 (2006)

    Article  CAS  Google Scholar 

  6. D. Guin, S.V. Manorama, S Radha, A.K. Nigam, Bull. Mater. Sci. 29, 617 (2006)

    Article  CAS  Google Scholar 

  7. D. Predoi, V. Kuncser, M. Zaharescu, A. Jitianu, M. Crisan, W. Keune, B. Sahoo, G. Filoti, M. Raileanu, J. Opt. Adv. Mater. 8(2), 518 (2006)

    CAS  Google Scholar 

  8. P. Obreja, D. Cristea, E. Budianu, R. Rebigan, V. Kuncser, M. Bulinski, G. Filoti, Prog Solid State Chem 34, 103 (2006)

    Article  CAS  Google Scholar 

  9. S. Onodera, H. Kondo, T. Kawana, MRS Bull. 21, 35 (1996)

    CAS  Google Scholar 

  10. R.F. Ziolo, E.P. Gionnelis, B.A. Weinstein, M.P. O’Horo, B.N. Ganguly, V. Metrota, M.W. Russel, D.R. Huffman, Science 257, 219 (1992)

    Article  CAS  Google Scholar 

  11. L. Nixon, C.A. Koval, R.D. Noble, G.S. Staff, Chem. Mater. 4, 117 (1992)

    Article  CAS  Google Scholar 

  12. C.R.F. Lund, J.A. Dumisec, J. Phys. Chem. 86, 130 (1982)

    Article  CAS  Google Scholar 

  13. C.M. Sorensen, in Nanoscale Materials in Chemistry ed. by Kenneth J. Klabunde (Wiley, New York, NY, 2001), P. 291

    Google Scholar 

  14. M.F. Thomas, C.E. Johnson, in Mössbauer Spectroscopy ed. by D.P.E Dickson, F.J Berry (Cambridge University Press, Cambridge, 1986), P. 192

    Google Scholar 

  15. L. Neel, Ann. Geophys. 5, 9 (1949)

    Google Scholar 

  16. J. Popplewell, Phys. Technol. 15, 150 (1984)

    Article  Google Scholar 

  17. R.L. Bailey, J. Magn. Magn. Mater. 39, 178 (1983)

    Article  Google Scholar 

  18. S. Odenbach, J. Phys. Cond. Matter 16(32), 1135 (2004)

    Article  Google Scholar 

  19. L.P. Orlov, V.E. Fertman, Magnetohydrodynamics 164, 400 (1980)

    Google Scholar 

  20. S. Odenbach, Int. J. Mod. Phys B 14(16), 1615 (2000)

    Article  CAS  Google Scholar 

  21. J.V. Vadasz, S. Govender, P. Vadasz, Int. J. Heat Mass Transfer 48(13), 2673 (2005)

    Article  Google Scholar 

  22. J. Roger, J.N. Pons, R. Massart, A. Halbreich, J.C. Bacri, Eur. Phys. J. AP 5, 321 (1999)

    Article  CAS  Google Scholar 

  23. A. Halbreich, E.V. Groman, D. Raison, C. Bouchaud, S. Paturance, J. Magn. Magn. Mater. 248(2), 276 (2002)

    Article  CAS  Google Scholar 

  24. M.K. Prasad, D. Panda, S. Singh, M.D. Mukadam, S.M. Yusuf, D. Bahadur, J. Appl. Phys. 97(10), 100903 (2005)

    Article  Google Scholar 

  25. S. Sem, M. Manciu, F.S. Manciu, Appl. Phys. Lett. 75(10), 1479 (1999)

    Article  Google Scholar 

  26. A.Yu Zubarev, L.Yu Iskakova, Physica A 343, 65 (2004)

    Google Scholar 

  27. L. Vekas, Adv. Sci. Technol. 54, 127 (2008)

    Article  CAS  Google Scholar 

  28. L. Vekas, D. Bica, O. Marinica, M. Rosa, V. Socoliuc, F. Stoian, J. Magn. Magn. Mater. 289, 50 (2005)

    Article  CAS  Google Scholar 

  29. A.C. Galca, Ellipsometric studies of anisotropic nanoscaled media: Ferrofluids in magnetic fields and anodized aluminium, PhD thesis, University of Twente, Enschede, The Netherlands 2006

    Google Scholar 

  30. S Morup, J. Magn. Magn. Mater. 37, 39 (1983)

    Article  Google Scholar 

  31. V. Kuncser, G. Schinteie, B. Sahoo, W. Keune, D. Bica, L. Vekas, G. Filoti, J. Phys. Cond. Matter 19, 016205 (2007)

    Article  Google Scholar 

  32. R. Alexandrescu, I. Morjan, I. Voicu, D. Dumitrache, L. Albu, I. Soare, G. Prodan, Appl. Surf. Sci. 248, 138 (2005)

    Article  CAS  Google Scholar 

  33. G. Filoti, V. Kuncser, G. Schinteie, P. Palade, I. Morjan, R. Alexandrescu, D. Bica, L. Vekas, Hyp. Int. 199, 55 (2009)

    Article  Google Scholar 

  34. I. Morjan, D. Dumitrache, R. Alexandrecu, R. Birjega, C. Fleaca, I. Voicu, L. Gavrila, I. Soare, G. Filoti, V. Kuncser, G. Prodan, V. Ciupina, L. Vekas, NSTI-Nanotech 2007, www.nsti.org, ISBN 1420063766 4, (2007)

Download references

Acknowledgments

The authors wish to thank Ministry of Education and Research for financial support by national program PN2 71-083 and by core program PN09450103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kuncser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer –Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kuncser, V., Schinteie, G., Alexandrescu, R., Morjan, I., Vekas, L., Filoti, G. (2010). Magnetic Configuration and Relaxation in Iron Based Nano-Particles: A Mössbauer Approach. In: Bârsan, V., Aldea, A. (eds) Trends in Nanophysics. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12070-1_13

Download citation

Publish with us

Policies and ethics