Advertisement

Abstract

We lay the foundations of a first-order correspondence theory for coalgebraic logics that makes the transition structure explicit in the first-order modelling. In particular, we prove a coalgebraic version of the van Benthem/Rosen theorem stating that both over arbitrary structures and over finite structures, coalgebraic modal logic is precisely the bisimulation invariant fragment of first-order logic.

Keywords

Modal Logic Propositional Variable Kripke Model Correspondence Theory Modal Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barr, M.: Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114, 299–315 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  3. 3.
    Chellas, B.: Modal Logic. Cambridge University Press, Cambridge (1980)zbMATHGoogle Scholar
  4. 4.
    D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets. Arch. Math. Logic 41, 267–298 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dawar, A., Otto, M.: Modal characterisation theorems over special classes of frames. In: Panangaden, P. (ed.) Logic in Computer Science, LICS 2005, pp. 21–30. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  6. 6.
    de Rijke, M.: A note on graded modal logic. Stud. Log. 64, 271–283 (2000)zbMATHCrossRefGoogle Scholar
  7. 7.
    Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13, 516–520 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gaifman, H.: On local and non-local properties. In: Logic Colloquium 1981, pp. 105–135. North Holland, Amsterdam (1982)Google Scholar
  9. 9.
    Gumm, H.P.: From T-coalgebras to filter structures and transition systems. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 194–212. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46, 311–350 (1990)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hansen, H.H., Kupke, C., Pacuit, E.: Bisimulation for neighbourhood structures. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 279–293. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games and Economic Behavior 35, 31–53 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Janin, D., Walukiewicz, I.: Automata for the modal μ-calculus and related results. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562. Springer, Heidelberg (1995)Google Scholar
  14. 14.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput. 94, 1–28 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Otto, M.: Bisimulation invariance and finite models. In: Logic Colloquium 2002. Lect. Notes Log., vol. 27, pp. 276–298. ASL (2006)Google Scholar
  16. 16.
    Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoret. Comput. Sci. 309, 177–193 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 19–33 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Rosen, E.: Modal logic over finite structures. J. Logic, Language and Information 6(4), 427–439 (1997)zbMATHCrossRefGoogle Scholar
  19. 19.
    Schröder, L.: A finite model construction for coalgebraic modal logic. J. Log. Algebr. Prog. 73, 97–110 (2007)zbMATHCrossRefGoogle Scholar
  20. 20.
    Schröder, L.: Expressivity of coalgebraic modal logic: The limits and beyond. Theoret. Comput. Sci. 390, 230–247 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Schröder, L., Pattinson, D.: Strong completeness of coalgebraic modal logics. In: Albers, S., Marion, J.-Y. (eds.) Theoretical Aspects of Computer Science, STACS 2009, Leibniz International Proceedings in Informatics, pp. 673–684. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl (2009)Google Scholar
  22. 22.
    van Benthem, J.: Modal Correspondence Theory. PhD thesis, Department of Mathematics, University of Amsterdam (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lutz Schröder
    • 1
  • Dirk Pattinson
    • 2
  1. 1.DFKI Bremen and Department of Computer ScienceUniversität Bremen 
  2. 2.Department of ComputingImperial CollegeLondon

Personalised recommendations