A Semantic Foundation for Hidden State

  • Jan Schwinghammer
  • Hongseok Yang
  • Lars Birkedal
  • François Pottier
  • Bernhard Reus
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6014)


We present the first complete soundness proof of the antiframe rule, a recently proposed proof rule for capturing information hiding in the presence of higher-order store. Our proof involves solving a non-trivial recursive domain equation, and it helps identify some of the key ingredients for soundness.


Program Logic Hide State Information Hiding Proof Rule Separation Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Parkinson, M., Bierman, G.: Separation logic and abstraction. In: POPL, pp. 247–258 (2005)Google Scholar
  2. 2.
    Biering, B., Birkedal, L., Torp-Smith, N.: BI-hyperdoctrines, higher-order separation logic, and abstraction. TOPLAS 29(5) (2007)Google Scholar
  3. 3.
    Parkinson, M., Bierman, G.: Separation logic, abstraction and inheritance. In: POPL, pp. 75–86 (2008)Google Scholar
  4. 4.
    Pottier, F.: Hiding local state in direct style: a higher-order anti-frame rule. In: LICS, pp. 331–340 (2008)Google Scholar
  5. 5.
    Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS, pp. 55–74 (2002)Google Scholar
  6. 6.
    O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In: POPL, pp. 268–280 (2004)Google Scholar
  7. 7.
    Birkedal, L., Torp-Smith, N., Yang, H.: Semantics of separation-logic typing and higher-order frame rules for Algol-like languages. LMCS 2(5:1) (2006)Google Scholar
  8. 8.
    Birkedal, L., Reus, B., Schwinghammer, J., Yang, H.: A simple model of separation logic for higher-order store. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 348–360. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested Hoare triples and frame rules for higher-order store. In: CSL, pp. 440–454 (2009)Google Scholar
  10. 10.
    Pottier, F.: Three comments on the anti-frame rule (July 2009) (unpublished note)Google Scholar
  11. 11.
    Levy, P.B.: Possible world semantics for general storage in call-by-value. In: CSL, pp. 232–246 (2002)Google Scholar
  12. 12.
    Rutten, J.J.M.M.: Elements of generalized ultrametric domain theory. TCS 170(1-2), 349–381 (1996)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Birkedal, L., Støvring, K., Thamsborg, J.: The category-theoretic solution of recursive metric-space equations. Technical Report ITU-2009-119, IT University of Copenhagen (2009)Google Scholar
  14. 14.
    Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., Reus, B.: A semantic foundation for hidden state (December 2009),
  15. 15.
    Streicher, T.: Domain-theoretic Foundations of Functional Programming. World Scientific, Singapore (2006)zbMATHGoogle Scholar
  16. 16.
    O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bulletin of Symbolic Logic 5(2), 215–244 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Pilkiewicz, A., Pottier, F.: The essence of monotonic state (October 2009) (submitted)Google Scholar
  18. 18.
    Pottier, F.: Generalizing the higher-order frame and anti-frame rules (July 2009) (unpublished note)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Jan Schwinghammer
    • 1
  • Hongseok Yang
    • 2
  • Lars Birkedal
    • 3
  • François Pottier
    • 4
  • Bernhard Reus
    • 5
  1. 1.Saarland Univ 
  2. 2.Queen Mary Univ. of London 
  3. 3.IT Univ. of Copenhagen 
  4. 4.INRIA 
  5. 5.Univ. of Sussex 

Personalised recommendations