Advertisement

Model Checking Is Static Analysis of Modal Logic

  • Flemming Nielson
  • Hanne Riis Nielson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6014)

Abstract

Flow Logic is an approach to the static analysis of programs that has been developed for functional, imperative and object-oriented programming languages and for concurrent, distributed, mobile and cryptographic process calculi. In this paper we extend it to deal with modal logics and prove that it can give an exact characterisation of the semantics of formulae in a modal logic. This shows that model checking can be performed by means of state-of-the-art approaches to static analysis and allow us to conclude that the problems of model checking and static analysis are reducible to each other. In terms of computational complexity we show that model checking by means of static analysis gives the same complexity bounds as are known for traditional approaches to model checking.

References

  1. 1.
    Apt, K., Blair, H., Walker, A.: A theory of declarative programming. In: Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan-Kaufman, San Francisco (1988)Google Scholar
  2. 2.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  3. 3.
    Balbin, I., Ramamohanarao, K.: A generalization of the differential approach to recursive query evaluation. Journal of Logic Programming 4(3), 259–262 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Riis Nielson, H.: Static validation of security protocols. Journal of Computer Security 13, 347–390 (2005)Google Scholar
  5. 5.
    Chandra, A., Harel, D.: Computable queries for relational data bases. Journal of Computer and System Sciences 21(2), 156–178 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Le Charlier, B., Van Hentenryck, P.: A universal top-down fixpoint algorithm. Technical report, CS-92-25, Brown University (1992)Google Scholar
  7. 7.
    Fecht, C., Seidl, H.: Propagating differences: An efficient new fixpoint algorithm for distributive constraint systems. Nordic Journal of Computing 5(4), 304–329 (1998)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Hankin, C., Nielson, F., Riis Nielson, H.: Advice from Belnap policies. In: Computer Security Foundations Symposium. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  9. 9.
    Hecht, M.S.: Flow Analysis of Computer Programs. North Holland, Amsterdam (1977)zbMATHGoogle Scholar
  10. 10.
    Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  11. 11.
    Lamprecht, A.-L., Margaria, T., Steffen, B.: Data-flow analysis as model checking within the jABC. In: Mycroft, A., Zeller, A. (eds.) CC 2006. LNCS, vol. 3923, pp. 101–104. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    De Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Nielson, F., Riis Nielson, H., Hankin, C.: Principles of Program Analysis, 2nd edn. Springer, Berlin (2005)zbMATHGoogle Scholar
  14. 14.
    Nielson, F., Riis Nielson, H., Hansen, R.R.: Validating firewalls using flow logics. Theoretical Computer Science 283(2), 381–418 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Nielson, F., Riis Nielson, H., Seidl, H.: A succinct solver for ALFP. Nordic Journal of Computing 9, 335–372 (2002)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Nielson, F., Riis Nielson, H., Sun, H., Buchholtz, M., Hansen, R.R., Pilegaard, H., Seidl, H.: The Succinct Solver Suite. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 251–265. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Riis Nielson, H., Nielson, F.: Flow Logic: a multi-paradigmatic approach to static analysis. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 223–244. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Riis Nielson, H., Nielson, F., Pilegaard, H.: Spatial analysis of BioAmbients. In: Giacobazzi, R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 69–83. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Paige, R.: Symbolic finite differencing - part i. In: Jones, N.D. (ed.) ESOP 1990. LNCS, vol. 432, pp. 36–56. Springer, Heidelberg (1990)Google Scholar
  20. 20.
    Schmidt, D.A.: Data flow analysis is model checking of abstract interpretations. In: POPL 1998, pp. 38–48 (1998)Google Scholar
  21. 21.
    Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract interpretations. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 351–380. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Steffen, B.: Data flow analysis as model checking. In: Ito, T., Meyer, A.R. (eds.) TACS 1991. LNCS, vol. 526, pp. 346–365. Springer, Heidelberg (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Flemming Nielson
    • 1
  • Hanne Riis Nielson
    • 1
  1. 1.DTU InformaticsTechnical University of Denmark 

Personalised recommendations