On the Relationship between Spatial Logics and Behavioral Simulations

  • Lucia Acciai
  • Michele Boreale
  • Gianluigi Zavattaro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6014)


Spatial logics have been introduced to reason about distributed computation in models for concurrency. We first define a spatial logic for a general class of infinite-state transition systems, the Spatial Transition Systems (sts), where a monoidal structure on states accounts for the spatial dimension. We then show that the model checking problem for this logic is undecidable already when interpreted over Petri nets. Next, building on work by Finkel and Schnöbelen, we introduce a subclass of sts, the Well-Structured sts (ws-sts), which is general enough to include such models as Petri nets, Broadcast Protocols, ccs and Weighted Automata. Over ws-sts, an interesting fragment of spatial logic - the monotone fragment - turns out to be decidable under reasonable effectiveness assumptions. For this class of systems, we also offer a Hennessy-Milner theorem, characterizing the logical preorder induced by the monotone fragment as the largest spatial-behavioural simulation. We finally prove that, differently from the corresponding logic, this preorder is in general not decidable, even when confining to effective ws-sts.


Monoidal Structure Model Check Problem Broadcast Protocol Concrete Instance Behavioral Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Acciai, L., Boreale, M., Zavattaro, G.: On the relationship between spatial logics and behavioral simulations. Tech. rep. (2010),
  2. 2.
    Acciai, L., Boreale, M.: Deciding safety properties in infinite-state pi-calculus via behavioural types. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 31–42. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and linearity. Wiley, Chichester (1992)zbMATHGoogle Scholar
  4. 4.
    Busi, N., Gabbrielli, M., Zavattaro, G.: Comparing Recursion, Replication, and Iteration in Process Calculi. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 307–319. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Caires, L.: Behavioural and Spatial Observations in a Logic for the pi-Calculus. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 72–89. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Caires, L., Cardelli, L.: A spatial logic for concurrency (part II). Theor. Comput. Sci. 322(3), 517–565 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Inf. Comput. 186(2), 194–235 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Caires, L., Lozes, E.: Elimination of Quantifiers and Undecidability in Spatial Logics for Concurrency. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 240–257. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Cardelli, L., Gordon, A.D.: Anytime, Anywhere: Modal Logics for Mobile Ambients. In: Proc. of POPL, pp. 365–377 (2000)Google Scholar
  10. 10.
    Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with r distinct prime factors. Amer. Journal Math 35, 413–422 (1913)CrossRefGoogle Scholar
  11. 11.
    Dufourd, E.C., Finkel, A., Schnöebelen, P.: Reset Nets Between Decidability and Undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Esparza, J., Finkel, A., Meyr, R.: On the Verification of Broadcast Protocols. In: Proc. of LICS, pp. 352–359 (1999)Google Scholar
  13. 13.
    Esparza, J.: On the Decidability of Model Checking for Several μ-calculi and Petri Nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  14. 14.
    Finkel, A., Goubault-Larrecq, J.: Forward Analysis for WSTS, Part I: Completions. In: Proc. of STACS, Dagstuhl Seminar Proceedings 09001, pp. 433–444 (2009)Google Scholar
  15. 15.
    Finkel, A., Goubault-Larrecq, J.: Forward Analysis for WSTS, Part II: Complete WSTS. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 188–199. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Finkel, A., McKenzie, P., Picaronny, C.: A Well-Structured Framework for Analysing Petri Net Extensions. Information and Computation 195(1-2), 1–29 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Finkel, A., Schnöebelen, P.: Well-Structured Transition Systems Everywhere! Theoretical Computer Science 256(1-2), 63–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hack, M.H.T.: Decidability questions for Petri nets. Ph.D Thesis. MIT (1976)Google Scholar
  19. 19.
    Hennessy, M., Milner, R.: On Observing Nondeterminism and Concurrency. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 299–309. Springer, Heidelberg (1980)Google Scholar
  20. 20.
    Hirschkoff, D., Lozes, E., Sangiorgi, D.: Separability, Expressiveness, and Decidability in the Ambient Logic. In: Proc. of LICS, pp. 423–432 (2002)Google Scholar
  21. 21.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Monographs in Theoretical Computer Science, EATCS Series, vol. 5. Springer, Heidelberg (1986)zbMATHGoogle Scholar
  22. 22.
    Milner, R.: Communication and concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  23. 23.
    Minsky, M.: Computation: Finite and Infinite Machines, 1st edn. Prentice-Hall, Inc., Englewood Cliffs (1967)zbMATHGoogle Scholar
  24. 24.
    Sangiorgi, D.: Extensionality and Intensionality of the Ambient Logics. In: Proc. of POPL, pp. 4–13 (2001)Google Scholar
  25. 25.
    Simon, I.: Limited subset of a Free Monoid. In: Proc. of FOCS, pp. 143–150 (1978)Google Scholar
  26. 26.
    Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability problems in Petri nets. Acta Informatica 21, 643–674 (1985)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Lucia Acciai
    • 1
  • Michele Boreale
    • 1
  • Gianluigi Zavattaro
    • 2
  1. 1.Dipartimento di Sistemi e InformaticaUniversità di FirenzeItaly
  2. 2.Dipartimento di Scienze dell’InformazioneUniversità di BolognaItaly

Personalised recommendations