A Variable-Capacity-Based Fuzzy Random Facility Location Problem with VaR Objective

  • Shuming Wang
  • Junzo Watada
  • Shamshul Bahar Yaakob

Abstract

In this paper, a Value-at-Risk (VaR) based fuzzy random facility location model (VaR-FRFLM) is built in which both the costs and demands are assumed to be fuzzy random variables, and the capacity of each facility is unfixed but a decision variable. A hybrid approach based on modified particle swarm optimization (MPSO) is proposed to solve the VaR-FRFLM. In this hybrid mechanism, an approximation algorithm is utilized to compute the fuzzy random VaR, a continuous Nbest-Gbest-based PSO and a genotype-phenotype-based binary PSO vehicles are designed to deal with the continuous capacity decisions and the binary location decisions, respectively, and two mutation operators are incorporated into the PSO to further enlarge the search space. A numerical experiment illustrates the application of the proposed hybrid MPSO algorithm and lays out its robustness to the parameter settings when dealing with the VaR-FRFLM.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berman, O., Drezner, Z.: A probalistic one-centre location problem on a network. Journal of the Operational Research Society 54(8), 871–877 (2003)MATHCrossRefGoogle Scholar
  2. 2.
    Bongartz, I., Calamai, P.H., Conn, A.R.: A projection method for lp norm location-allocation problems. Mathematical Programming 66(1-3), 283–312 (1994)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Clerc, M., Kennedy, J.: The particle swarm — Explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computaion 6(1), 58–73 (2002)CrossRefGoogle Scholar
  4. 4.
    Ishii, H., Lee, Y.L., Yeh, K.Y.: Fuzzy facility location problem with preference of candidate sites. Fuzzy Sets and Systems 158(17), 1922–1930 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Orlando, pp. 4104–4108 (1997)Google Scholar
  6. 6.
    Kwakernaak, H.: Fuzzy random variables–I. Definitions and theorems, Information Sciences 15(1), 1–29 (1978)MATHMathSciNetGoogle Scholar
  7. 7.
    Lee, S., Soak, S., Oh, S., Pedrycz, W., Jeon, M.: Modified binary particle swarm optimization. Progress in Natural Science 18(9), 1161–1166 (2008)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Liu, B., Liu, Y.K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Transaction on Fuzzy Systems 10(4), 445–450 (2002)CrossRefGoogle Scholar
  9. 9.
    Liu, Y.K., Liu, B.: Fuzzy random variable: A scalar expected value operator. Fuzzy Optimization and Decision Making 2(2), 143–160 (2003)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Liu, Y.K., Liu, B.: On minimum-risk problems in fuzzy random decision systems. Computers & Operations Research 32(2), 257–283 (2005)MATHMathSciNetGoogle Scholar
  11. 11.
    Louveaux, F.V., Peeters, D.: A dual-based procedure for stochastic facility location. Operations Research 40(3), 564–573 (1992)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets: Analysis and Design. MIT Press, Cambridge (1998)MATHGoogle Scholar
  13. 13.
    Pedrycz, W., Park, B.J., Pizzi, N.J.: Identifying core sets of discriminatory features using particle swarm optimization. Expert Systems with Applications 36(3), 4610–4616 (2009)CrossRefGoogle Scholar
  14. 14.
    Ratnweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coeffients. IEEE Transactions on Evolutionary Computation 8(3), 240–255 (2004)CrossRefGoogle Scholar
  15. 15.
    Wang, S., Watada, J.: Value-at-Risk-based fuzzy stochastic optimization problems. In: Proceedings of the 2009 IEEE International Conference on Fuzzy Systems, Jeju Island, Korea (2009)Google Scholar
  16. 16.
    Wang, S., Watada, J., Pedrycz, W.: Value-at-Risk-based two-stage fuzzy facility location problems. IEEE Transactions on Industrial Informatics 5(4) (2009) (in press)Google Scholar
  17. 17.
    Wang, S., Watada, J., Pedrycz, W.: Fuzzy random facility location problems with recourse. In: Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, Texas, USA (2009)Google Scholar
  18. 18.
    Wen, M., Iwamura, K.: Facility location–allocation problem in random fuzzy environment: Using (α,β) -cost minimization model under the Hurewicz criterion. Computers & Mathematics with Applications 55(4), 704–713 (2008)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1(1), 3–28 (1978)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Shuming Wang
    • 1
  • Junzo Watada
    • 1
  • Shamshul Bahar Yaakob
    • 1
    • 2
  1. 1.Graduate School of IPSWaseda UniversityFukuokaJapan
  2. 2.School of Electrical Systems EngineeringUniversiti Malaysia PerlisJejawiMalaysia

Personalised recommendations