Skip to main content

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 154))

  • 4431 Accesses

Abstract

Basic principles of calorimetry coupled with other techniques are introduced. These methods are used in heterogeneous catalysis for characterization of acidic, basic and red-ox properties of solid catalysts. Estimation of these features is achieved by monitoring the interaction of various probe molecules with the surface of such materials. Overview of gas phase, as well as liquid phase techniques is given. Special attention is devoted to coupled calorimetry–volumetry method. Furthermore, the influence of different experimental parameters on the results of these techniques is discussed, since it is known that they can significantly influence the evaluation of catalytic properties of investigated materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Arnaut, S. Formosinho, H. Burrows, Chemical Kinetics: From Molecular Structure to Chemical Reactivity (Elsevier, Amsterdam, 2007)

    Google Scholar 

  2. J.M. Tatibouet et al., Methanol oxidation as a catalytic surface probe. Appl. Catal. A Gen. 148, 213–252 (1997)

    Article  Google Scholar 

  3. M. Baldani, I.E. Wachs et al., Methanol: a “smart” chemical probe molecule. Catal. Lett. 75, 137–149 (2001)

    Article  Google Scholar 

  4. W.E. Farneth, J. Gorte et al., Methods for characterizing zeolite acidity. Chem. Rev. 95, 615–635 (1995)

    Article  CAS  Google Scholar 

  5. N. Cardona-Martinez, J.A. Dumesic, Applications of adsorption microcalorlmetry to the study of heterogeneous catalysis, in Advances in Catalysis, vol. 42, ed. by D.D. Eley, H. Pines, P.B. Weisz (Academic, San Diego, 1992), pp. 149–244

    Google Scholar 

  6. P.J. Andersen, H.H. Kung, Characterization of catalysts with microcalorimetry, in Catalysis, vol. 11, ed. by J.J. Spivey, S.K. Agarwal (Royal Society of Chemistry, Cambridge, 1994), pp. 441–466

    Google Scholar 

  7. A. Auroux et al., Acidity characterization by microcalorimetry and relationship with reactivity. Top. Catal. 4, 71–89 (1997)

    Article  CAS  Google Scholar 

  8. V. Solinas, I. Ferino et al., Microcalorimetric characterisation of acid–basic catalysts. Catal. Today 41, 179–189 (1998)

    Article  CAS  Google Scholar 

  9. B.E. Spiewak, J.A. Dumesic et al., Microcalorimetric measurements of differential heats of adsorption on reactive catalyst surfaces. Thermochim. Acta 290, 43–53 (1996)

    Article  Google Scholar 

  10. A. Auroux, Thermal methods: calorimetry, differential thermal analysis, and thermogravimetry, in Catalyst Characterization: Physical Techniques for Solid Materials, ed. by B. Imelik, J.C. Védrine (Plenum Press, New York, 1994), pp. 611–635

    Google Scholar 

  11. P.C. Gravelle et al., Heat-flow microcalorimetry and its application to heterogeneous catalysis, in Advances in Catalysis, vol. 22, ed. by D.D. Eley, H. Pines, P.B. Weisz (Academic, San Diego, 1972), pp. 191–263

    Google Scholar 

  12. A. Auroux et al., Acidity and basicity: determination by adsorption microcalorimetry, in Molecular Sieves—Science and Technology: Acidity and Basicity, vol. 6, ed. by H. Karge, J. Weitkamp (Springer, Heidelberg, 2008), pp. 45–152

    Google Scholar 

  13. Y.I. Tarasevich et al., Interaction of water and other polar substances with various sorbents according to calorimetric and chromatographic data. Theor. Exp. Chem. 37, 197–214 (2001)

    Article  CAS  Google Scholar 

  14. A. Auroux, M. Huang, S. Kaliaguine et al., Decrystallization process of HNaY zeolites upon mechanical milling: a microcalorimetric and thermokinetic study. Langmuir 12, 4803–4807 (1996)

    Google Scholar 

  15. N. Cardona-Martinez, J.A. Dumesic et al., Acid strength of silica–alumina and silica studied by microcalorimetric measurements of pyridine adsorption. J. Catal. 125, 427–444 (1990)

    Article  CAS  Google Scholar 

  16. I. Ferino, R. Monaci, E. Rombi, V. Solinas et al., Microcalorimetric investigation of mordenite and Y zeolites for 1-methylnaphthalene isomerisation. J. Chem. Soc. Faraday Trans. 95, 2647–2652 (1998)

    Article  Google Scholar 

  17. G.I. Kapustin, T.R. Brueva, A.L. Klyacho, A.M. Rubinshtein et al., Analysis of distribution of adsorbate molecules within zeolite crystals by thermokinetics. Kinet. Catal. 22, 183–195 (1981)

    Google Scholar 

  18. A. Gervasini, A. Auroux et al., Thermodynamics of adsorbed molecules for a new acid–base topochemistry of alumina. J. Phys. Chem. 97, 2628–2639 (1993)

    Article  CAS  Google Scholar 

  19. Lj Damjanović, A. Auroux et al., Determination of acid/base properties by temperature programmed desorption (TPD) and adsorption calorimetry, in Zeolite Chemistry and Catalysis: An Integrated Approach and Tutorial, ed. by A. Chester, E. Derouane (Springer, Berlin, 2009), pp. 107–167

    Google Scholar 

  20. T.J. Gricus Kofke, R.J. Gorte, W.E. Farneth et al., Stoichiometric adsorption complexes in H-ZSM-5. J. Catal. 114, 34–45 (1988)

    Article  Google Scholar 

  21. T.J. Gricus Kofke, R.J. Gorte, G.T. Kokotailo, W.E. Farneth et al., Stoichiometric adsorption complexes in H-ZSM-5, H-ZSM-12, and H-mordenite zeolites. J. Catal. 115, 265–272 (1989)

    Article  Google Scholar 

  22. T.J. Gricus Kofke, G.T. Kokotailo, R.J. Gorte et al., Stoichiometric adsorption complexes in [B]- and [Fe]-ZSM-5 zeolites. J. Catal. 116, 252–262 (1989)

    Article  Google Scholar 

  23. J. Tittensor, R.J. Gorte, D. Chapman et al., Isopropylamine adsorption for the characterization of acid sites in silica-alumina catalysts. J. Catal. 138, 714–720 (1992)

    Article  CAS  Google Scholar 

  24. R.J. Gorte et al., What do we know about the acidity of solid acids? Catal. Lett. 62, 1–13 (1999)

    Article  CAS  Google Scholar 

  25. C. Pereira, R.J. Gorte et al., Method for distinguishing Brönsted-acid sites in mixtures of H-ZSM-5 H-Y and silica–alumina. Appl. Catal. A 90, 145–157 (1992)

    CAS  Google Scholar 

  26. A. Gervasini, C. Picciau, A. Auroux et al., Characterization of copper-exchanged ZSM-5 and ETS-10 catalysts with low and high degrees of exchange. Micropor. Mesopor. Mater. 35–36, 457–469 (2000)

    Google Scholar 

  27. J. Le Bars, J.C. Védrine, A. Auroux, B. Pommier, G.M. Pajonk et al., Calorimetric study of vanadium pentoxide catalysts used in the reaction of ethane oxidative dehydrogenation. J. Phys. Chem. 96, 2217–2221 (1992)

    Google Scholar 

  28. P.F. Siril, A.D. Davison, J.K. Randhava, D.R. Brown et al., Calorimetric study of vanadium pentoxide catalysts used in the reaction of ethane oxidative dehydrogenation. J. Mol. Catal. A: Chem. 267, 72–78 (2007)

    Google Scholar 

  29. P.R. Westmoreland, T. Inguilizian, K. Rotem et al., Flammability kinetics from TGA/DSC/GCMS, microcalorimetry and computational quantum chemistry. Thermochim. Acta 367–368, 401–405 (2001)

    Article  Google Scholar 

  30. A.J. Groszek et al., Flow adsorption microcalorimetry. Thermochim. Acta 312, 133–143 (1998)

    Article  CAS  Google Scholar 

  31. P.F. Siril, D.R. Brown et al., Acid site accessibility in sulfonated polystyrene acid catalysts: calorimetric study of \(NH_{3}\) adsorption from flowing gas stream. J. Mol. Catal. A: Chem. 252, 125–131 (2006)

    Google Scholar 

  32. S.P. Felix, C.S. Jowitt, D.R. Brown et al., Base adsorption calorimetry for characterising surface acidity: a comparison between pulse flow and conventional “static” techniques. Thermochim. Acta 433, 59–65 (2005)

    Article  CAS  Google Scholar 

  33. V. Rakić, Lj Damjanović, V. Rac, D. Stošić, V. Dondur, A. Auroux et al., The adsorption of nicotine from aqueous solutions on different zeolite structures. Water Res. 44, 2047–2057 (2010)

    Article  Google Scholar 

  34. J.A. Thomson, J.E. Ladbury, Isothermal titration calorimetry, in Biocalorimetry 2 Applications of Calorimetry in the Biological Sciences, ed. by J.E. Ladbury, M.L. Doyle (Wiley-VCH, Weinheim, 2004), pp. 35–58

    Google Scholar 

  35. Y.Y. Lim, R.S. Drago, M.W. Babich, N. Wong, P.E. Doan et al., Thermodynamic studies of donor binding to heterogeneous catalysts. J. Am. Chem. Soc. 109, 169–179 (1987)

    Article  CAS  Google Scholar 

  36. C.W. Chronister, R.S. Drago et al., Determination of hydrogen-bonding acid sites on silica using the Cal-Ad method. J. Am. Chem. Soc. 115, 4793–4798 (1993)

    Article  CAS  Google Scholar 

  37. R.S. Drago, S.C. Dias, M. Torrealba, L. de Lima et al., Calorimetric and spectroscopic investigation of the acidity of HZSM-5. J. Am. Chem. Soc. 119, 4444–4452 (1997)

    Article  CAS  Google Scholar 

  38. N. Kob, R.S. Drago, V. Young et al., Preparation, characterization, and acidity of a silica gel/tungsten oxide solid acid. Inorg. Chem. 36, 5127–5131 (1997)

    Article  CAS  Google Scholar 

  39. R.S. Drago, C.S. Dias, J.M. McGilvray, A.L.M.L. Mateus et al., Acidity and hydrophobicity of TS-1. J. Phys. Chem. B 102, 1508–1514 (1998)

    Article  CAS  Google Scholar 

  40. R.S. Drago, N. Kob et al., Acidity and reactivity of sulfated zirconia and metal-doped sulfated zirconia. J. Phys. Chem. B 101, 3360–3364 (1997)

    Article  CAS  Google Scholar 

  41. E.M. Arnet, R.A. Haaksma, B. Chawla, M.H. Healy et al., Thermochemical comparisons of homogeneous and heterogeneous acids and bases. 1: sulfonic acid solutions and resins as prototype Brönsted acids. J. Am. Chem. Soc. 108, 4888–4896 (1986)

    Google Scholar 

  42. E.M. Arnet, T. Absan, K. Amarnath et al., Thermochemical comparisons of solid and homogeneous acids and bases: pyridine and polyvinylpyridine as prototype bases. J. Am. Chem. Soc. 113, 6858–6861 (1991)

    Article  Google Scholar 

  43. P. Carniti, A. Gervasini, S. Biella, A. Auroux et al., Intrinsic and effective acidity study of niobic acid and niobium phosphate by a multitechnique approach. Chem. Mater. 17, 6128–6136 (2005)

    Article  CAS  Google Scholar 

  44. S. Koujout, D.R. Brown et al., Calorimetric base adsorption and neutralisation studies of supported sulfonic acids. Thermochim. Acta 434, 158–164 (2005)

    Article  CAS  Google Scholar 

  45. C. Guimon, H. Martinez, Recent Research Developments in Catalysis, vol. 2 (Research Signpost, Kerala, 2003)

    Google Scholar 

  46. H. Knözinger, Specific poisoning and characterization of catalytically active oxide surfaces, in Advances in Catalysis, vol. 25, ed. by D.D. Eley, H. Pines, P.B. Weisz (Academic, San Diego, 1976), pp. 184–271

    Google Scholar 

  47. H.A. Benesi, B.H. Winquist, Surface acidity of solid catalysts, in Advances in Catalysis, vol. 27, ed. by D.D. Eley, H. Pines, P.B. Weisz (Academic, San Diego, 1997), pp. 97–182

    Google Scholar 

  48. Y. Mitani, K. Tsutsumi, H. Takahashi et al., Direct measurement of the interaction energy between solids and gases X. acidic properties of hydroxyl sites of H-Y zeolite determined by high-temperature calorimetry. Bull. Chem. Soc. Jpn. 56, 1917–1920 (1983)

    Article  CAS  Google Scholar 

  49. K. Tsutsumi, Y. Mitani, H. Takahashi et al., Direct measurement of the interaction energy between solids and gases IX. heats of adsorption of ammonia and pyridine on several solids at high temperature. Bull. Chem. Soc. Jpn. 56, 1912–1916 (1983)

    Article  CAS  Google Scholar 

  50. J.C. Védrine, A. Auroux, G. Coudurier, Combined physical techniques in the characterization of zeolite ZSM-5 and ZSM-11 acidity and basicity, in Catalytic Materials: Relationship Between Structure and Reactivity, vol. 248, ASC Symposium Series, ed. by T.W. Whyte Jr, R.A. Dalla Betta, E.G. Derouane, R.T.K. Baker (American Chemical Society, Washington, 1984), pp. 253–273

    Google Scholar 

  51. Lj Damjanović, A. Auroux, Heterogeneous catalysis on solids, in Handbook of Thermal Analysis and Calorimetry, vol. 5, ed. by M.E. Brown, P.K. Gallagher (Elsevier, Amsterdam, 2008), pp. 387–438

    Google Scholar 

  52. A. Auroux, Z.C. Chi, N. Echoufi, Y. Ben Taarit, Calorimetric investigation of the acidity of dealuminated Y-type zeolites using various basic probes, in Zeolites as Catalysts, Sorbents and Detergent Builders, vol. 46, ed. by H.G. Karge, J. Weitkamp (Elsevier, Amsterdam, 1989), pp. 377–387

    Google Scholar 

  53. A. Auroux, New probes for an accurate calorimetric determination of the acidity of zeolites, in Innovation in Zeolite Materials Science, vol. 37, Studies in Surface Science and Catalysis, ed. by P.J. Grobet, W.J. Mortier, G. Schulz-Ekloff (Elsevier, Amsterdam, 1988), pp. 385–391

    Google Scholar 

  54. D.J. Parrillo, R.J. Gorte, W.E. Farneth et al., A calorimetric study of simple bases in H-ZSM-5: a comparison with gas-phase and solution-phase acidities. J. Am. Chem. Soc. 115, 12441–12445 (1993)

    Article  CAS  Google Scholar 

  55. D.J. Parrillo, A. Biaglow, R.J. Gorte, D. White, Quantification of acidity in H-ZSM-5, in Zeolites and Related Microporous Materials: State of the Art, vol. 34, Studies in Surface Science and Catalysis, ed. by J. Weitkamp, H.G. Karge, H. Pfeifer, W. Hölderich (Elsevier, Amsterdam, 1994), pp. 701–708

    Google Scholar 

  56. D.J. Parrillo, R.J. Gorte et al., Characterization of stoichiometric adsorption complexes in H-ZSM-5 using microcalorimetry. Catal. Lett. 16, 17–25 (1992)

    Article  CAS  Google Scholar 

  57. K. Teraishi et al., Effect of Si to A1 substitution at next-nearest neighbor sites on the acid strength: ab initio calculation of the proton affinity and the heat of ammonia adsorption. Micropor. Mater. 5, 233–244 (1995)

    Article  CAS  Google Scholar 

  58. J.C. Lavalley et al., Infrared spectrometric studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catal. Today 27, 377–401 (1996)

    Article  CAS  Google Scholar 

  59. M. Cabrejas Manchado, J.M. Guil, A. Perez Masia, A. Ruiz Paniego, J.M. Trejo Menayo et al., Adsorption of \({\rm {H}}_{2}\), \({\rm {O}}_{2}\), CO, and \({\rm {CO}}_{2}\) on a y-alumina: volumetric and calorimetric studies. Langmuir 10, 685–691 (1994)

    Article  CAS  Google Scholar 

  60. F. Witzel, H.G. Karge, A. Gutze et al., in Proceedings from the 9th International Zeolite Conference, Montreal, Canada, 5–10 July 1992, vol. 2, ed. by R. von Ballamos, J.B. Higgins, M.M.J. Treacy (Butterworth-Heineman, Boston, 1993), p. 283

    Google Scholar 

  61. L. Yang, O. Kresnawahjuesa, R.J. Gorte, A calorimetric study of oxygen-storage in Pd/ceria and Pd/ceria–zirconia catalysts. Catal. Lett. 72, 33–37 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan Stošić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stošić, D., Auroux, A. (2013). Couplings. In: Auroux, A. (eds) Calorimetry and Thermal Methods in Catalysis. Springer Series in Materials Science, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11954-5_3

Download citation

Publish with us

Policies and ethics