Skip to main content

Characterisation of Catalysts and Adsorbents by Inverse Gas Chromatography

  • Chapter
  • First Online:
Calorimetry and Thermal Methods in Catalysis

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 154))

Abstract

Inverse Gas Chromatography (IGC), in contrast to analytical chromatography, consists on adsorption of a known solute on an adsorbent whose properties are to be determined. The shape and positions of the peaks supply information about the nature and reactivity of the solid surface. If different probe molecules are used (i.e. polar and apolar molecules, molecules with acid/base properties), it is possible to study the specificity of these interactions. Therefore, IGC can be used both as a tool for both characterizing the adsorption of a given compound on a given solid or for studying the nature (in terms of acid-base properties, polar or apolar interactions, etc.) of the active sites of a certain catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.V. Kiselev, Adsorbents in gas chromatography, in Advances in Chromatography, ed. by J.C. Giddings, R.A. Keller (Marcel Dekker, New York, 1967)

    Google Scholar 

  2. A. Voelkel, Inverse gas-chromatography—characterization of polymers, fibers, modified silicas, and surfactants. Crit. Rev. Anal. Chem. 22, 411–439 (1991). doi:10.1080/10408349108051641

    Article  CAS  Google Scholar 

  3. V.R. Choudhary, L.K. Doraiswamy, Applications of gas chromatography in catalysis. Ind. Eng. Chem. Prod. Res. Develop. 10, 218–237 (1971). doi:10.1021/i360039a002

    Article  Google Scholar 

  4. F. Thielmann, Introduction into the characterisation of porous materials by inverse gas chromatography. J. Chromatogr. A 1037, 115–123 (2004). doi:10.1016/j.chroma.2004.03.060

    Article  CAS  Google Scholar 

  5. R.E. Hayes, S.T. Kolaczkowski, Introduction to Catalytic Combustion (Gordon and Breach Science Publisher, Amsterdam, 1997)

    Google Scholar 

  6. J. van Deemter, F.J. Zuiderweg, A. Klinkerberg, Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 5, 271–289 (1956). doi:10.1016/0009-2509(56)80003-1

    Article  Google Scholar 

  7. M. Montes-Morán, J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Adsorption of n-alkanes on plasma-oxidized high-strength carbon fibers. J. Colloid Interface Sci. 247, 290–302 (2002). doi:10.1006/jcis.2001.8134

    Article  Google Scholar 

  8. E. Glückauf, Adsorption isotherms from chromatographic measurements. Nature 156, 748 (1945). doi:10.1038/156748c0

    Article  Google Scholar 

  9. E. Glückauf, Theory of chromatography. Part II. Chromatograms of a single solute. J. Chem. Soc. 1302–1308 (1947). doi:10.1039/JR9470001302

  10. S.J. Gregg, R. Stock, Gas Chromatography (Desty D.H, London, 1958)

    Google Scholar 

  11. S.J. Gregg, The Surface Chemistry of Solids, 2nd edn. (Chapman and Hall, London, 1961)

    Google Scholar 

  12. T. Paryjczak, Gas Chromatography in Adsorption and Catalysis (J. Wiley & Sons, New York, 1987)

    Google Scholar 

  13. E. Cremer, H. Huber, in Gas Chromatogr: Instr Soc Amer Symp, vol. 3, ed. by N. Brenner, et al. (Academic Press, New York, 1962), p. 169

    Google Scholar 

  14. A. Seidel-Morgenstern, Experimental determination of single solute and competitive adsorption isotherms. J. Chromatogr. A 1037, 255–272 (2004). doi:10.1016/j.chroma.2003.11.108

    Article  CAS  Google Scholar 

  15. J.R. Conder, S. McHale, M.A. Jones, Evaluation of methods of measuring gas-solid chromatographic retention on skewed peaks. Anal. Chem. 58, 2663–2668 (1986). doi:10.1021/ac00126a019

    Article  CAS  Google Scholar 

  16. B. Charmas, R. Leboda, Effect of surface heterogeneity on adsorption on solid surfaces: application of inverse gas chromatography in the studies of energetic heterogeneity of adsorbents. J. Chromatogr. A 886, 133–152 (2000). doi:10.1016/S0021-9673(00)00432-5

    Article  CAS  Google Scholar 

  17. J.H. De Boer, The Dynamical Character of Adsorption (Clarendon Press, Oxford, 1953)

    Google Scholar 

  18. C. Kemball, E.K. Rideal, The adsorption of vapours on mercury. I. Non-polar substances. Proc. R. Soc. A 187, 53–73 (1946). doi:10.1098/rspa.1946.0065

    Article  CAS  Google Scholar 

  19. M.A. Montes-Morán, A. Martínez-Alonso, J.M.D. Tascón, Effect of sizing on the surface properties of carbon fibres. J. Mater. Chem. 12, 3843–3850 (2002). doi:10.1039/B202902B

    Article  Google Scholar 

  20. E. Díaz, S. Ordóñez, A. Vega, Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites. J. Colloid Interface Sci. 305, 7–16 (2007). doi:10.1016/j.jcis.2006.09.036

    Article  Google Scholar 

  21. S.Y. Bhide, S. Yashonath, Structure and dynamics of benzene in one-dimensional channels. J. Phys. Chem. B 104, 11977–11986 (2000). doi:10.1021/jp002626h

    Article  CAS  Google Scholar 

  22. F.M. Fowkes, Attractive forces at interface. Ind. Eng. Chem. 56, 40–52 (1964). doi:10.1021/ie50660a008

    Article  CAS  Google Scholar 

  23. F.M. Fowkes, Donor-acceptor interactions at interfaces. J. Adhesion 4, 155–159 (1972). doi:10.1080/00218467208072219

    Google Scholar 

  24. F.M. Fowkes, M.A. Mostafa, Acid-base interactions in polymer adsorption. Ind. Eng. Chem. Prod. Res. Dev. 17, 3–7 (1978). doi:10.1021/i360065a002

    Article  CAS  Google Scholar 

  25. J. Schultz, L. Lavielle, C. Martin, The role of interface in carbon fiber-epoxy composites. J. Adhesion 23, 45–60 (1987). doi:10.1080/00218468708080469

    Article  CAS  Google Scholar 

  26. G.M. Dorris, D.G. Gray, Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J. Colloid Interface Sci. 77, 353–362 (1980). doi:10.1016/0021-9797(80)90304-5

    Article  CAS  Google Scholar 

  27. P.N. Jacob, J.C. Berg, Acid-base surface energy characterization of microcrystalline cellulose and two wood pulp fiber types using inverse gas chromatography. Langmuir 10, 3086–3093 (1994). doi:10.1021/la00021a036

    Article  CAS  Google Scholar 

  28. A. Pizzi, K.L. Mittal, Handbook of Adhesive Technology (Marcel Dekker, New York, 2003)

    Google Scholar 

  29. U. Panzer, H.P. Schreiber, On the evaluation of surface interactions by inverse gas chromatography. Macromolecules 25, 3633–3637 (1992). doi:10.1021/ma00040a005

    Article  CAS  Google Scholar 

  30. A. van Asten, N. van Veenendaal, S. Koster, Surface characterization of industrial fibers with inverse gas chromatography. J. Chromatogr. A 888, 175–196 (2000). doi:10.1016/S0021-9673(00)00487-8

    Article  Google Scholar 

  31. J. Xie, Q. Zhang, K.T. Chiang, An IGC study of Pd/SDB catalysts for partial oxidation of propylene to acrylic acid. J. Catal. 191, 86–92 (2000). doi:10.1006/jcat.1999.2796

    Article  CAS  Google Scholar 

  32. E. Díaz, S. Ordóñez, A. Vega, J. Coca, Adsorption properties of a Pd/\(\gamma \)-Al\(_{2}\)O\(_{3}\) catalyst using inverse gas chromatography. Micropor. Mesopor. Mater. 70, 109–118 (2004). doi: 10.1016/j.micromeso.2004.03.005

    Article  Google Scholar 

  33. S. Dong, M. Breadle, J.B. Donnet, Study of solid-surface polarity by inverse gas-chromatography at infinite dilution. Chromatographia 28, 469–472 (1989). doi:10.1007/BF02261062

    Article  CAS  Google Scholar 

  34. J.B. Donnet, S.J. Park, H. Balard, Evaluation of specific interactions of solid-surfaces by inverse gas-chromatography—a new approach based on polarizability of the probes. Chromatographia 31, 434–440 (1991). doi:10.1007/BF02262385

    Article  CAS  Google Scholar 

  35. V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions (Plenum Press, New Cork, 1979)

    Google Scholar 

  36. F.L. Riddle, F.M. Fowkes, Spectral shifts in acid-base chemistry. 1. van der Waals contributions to acceptor numbers. J. Am. Chem. Soc. 112, 3258–3264 (1990). doi:10.1021/ja00165a001

    Article  Google Scholar 

  37. T. Hamieh, M. Nardin, M. Rageui-Lescourt, H. Haidara, J. Schultz, Study of acid-base interactions between some metallic oxides and model organic molecules. Colloids Surf. A 125, 155–161 (1997). doi:10.1016/S0927-7757(96)03855-1

    Article  CAS  Google Scholar 

  38. H. Ishida, Characterization of Composite Materials (Butterworth-Heinemann, London, 1994)

    Google Scholar 

  39. M. Pyda, G. Guiochon, Surface properties of silica-based adsorbents measured by inverse gas-solid chromatography at finite concentration. Langmuir 13, 1020–1025 (1997). doi:10.1021/la950541f

    Article  CAS  Google Scholar 

  40. H. Balard, A. Saada, E. Papirer, B. Siffert, Energetic surface heterogeneity of illites and kaolinites. Langmuir 13, 1256–1259 (1997). doi:10.1021/la9515276

    Article  CAS  Google Scholar 

  41. M.R. Cuervo, E. Asedegbega-Nieto, E. Díaz, A. Vega, S. Ordóñez, E. Castillejos-López, I. Rodríguez-Ramos, Effect of carbon nanofiber functionalization on the adsorption properties of volatile organic compounds. J. Chromatogr. A 1188, 264–273 (2008). doi:10.1016/j.chroma.2008.02.061

    Article  CAS  Google Scholar 

  42. F. Thielmann, E. Baumgarten, Characterization of microporous aluminas by inverse gas chromatography. J. Colloid Interface Sci. 229, 418–422 (2000). doi:10.1006/jcis.2000.6958

    Article  CAS  Google Scholar 

  43. E. Díaz, S. Ordóñez, A. Auroux, Comparative study on the gas-phase adsorption of hexane over zeolites by calorimetry and inverse gas chromatography. J. Chromatogr. A 1095, 131–137 (2005). doi:10.1016/j.chroma.2005.07.117

    Article  Google Scholar 

  44. J.W. Dove, G. Buckton, C. Doherty, A comparison of two contact angle measurement methods and inverse gas chromatography to assess the surface energies of theophylline and caffeine. Int. J. Pharm. 138, 199–206 (1996). doi:10.1016/0378-5173(96)04535-8

    Article  CAS  Google Scholar 

  45. C.-W. Won, B. Siffert, Preparation by sol-gel method of SiO\(_2\) and mullite (3Al\(_{2}\)O\(_{3}\), 2SiO\(_{2})\) powders and study of their surface characteristics by inverse gas chromatography and zetametry. Colloids Surf. A 131, 161–172 (1998). doi: 10.1016/S0927-7757(97)00149-0

    Article  CAS  Google Scholar 

  46. R.A. Bailey, K.C. Persaud, Application of inverse gas chromatography to characterisation of a polypyrrole surface. Anal. Chim. Acta 363, 147–156 (1998). doi:10.1016/S0003-2670(98)00084-1

    Article  CAS  Google Scholar 

  47. K. Batko, A. Voelkel, Inverse gas chromatography as a tool for investigation of nanomaterials. J. Colloid Interface Sci. 315, 768–771 (2007). doi:10.1016/j.jcis.2007.07.028

    Article  CAS  Google Scholar 

  48. C. Herry, M. Baudu, D. Raveau, Estimation of the influence of structural elements of activated carbons on the energetic components of adsorption. Carbon 39, 1879–1889 (2001). doi:10.1016/S0008-6223(00)00310-9

    Article  CAS  Google Scholar 

  49. M.A. Montes-Morán, J.I. Paredes, A. Martínez-Alonso, J.M.D. Tascón, Surface characterization of PPTA fibers using inverse gas chromatography. Macromolecules 35, 5085–5096 (2002). doi:10.1021/ma020069m

    Article  Google Scholar 

  50. E. Papirer, E. Brendle, F. Ozil, H. Balard, Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography. Carbon 37, 1265–1274 (1999). doi:10.1016/S0008-6223(98)00323-6

    Article  CAS  Google Scholar 

  51. E. Díaz, S. Ordóñez, A. Vega, J. Coca, Characterization of Co, Fe and Mn-exchanged zeolites by inverse gas chromatography. J. Chromatogr. A 1049, 161–169 (2004). doi:10.1016/j.chroma.2004.07.065

    Google Scholar 

  52. E. Díaz, S. Ordóñez, A. Vega, J. Coca, Catalytic combustion of hexane over transition metal modified zeolites NaX and CaA. Appl. Catal. B 56, 313–322 (2005). doi:10.1016/j.apcatb.2004.09.016

    Article  Google Scholar 

  53. E. Díaz, S. Ordóñez, A. Vega, A. Auroux, J. Coca, Benzylation of benzene over Fe-modified ZSM-5 zeolites: correlation between activity and adsorption properties. Appl. Catal. A 295, 106–115 (2005). doi:10.1016/j.apcata.2005.07.059

    Article  Google Scholar 

  54. N.A. Katsanos, N. Rakintzis, F. Roubani-Kalantzopoulou, E. Arvanitopoulou, A. Kalantzopoulos, Measurement of adsorption energies on heterogeneous surfaces by inverse gas chromatography. J. Chromatogr. A 845, 103–111 (1999). doi:10.1016/S0021-9673(99)00262-9

    Article  CAS  Google Scholar 

  55. N.A. Katsanos, Physicochemical measurements by the reversed-flow version of inverse gas chromatography. J. Chromatogr. A 969, 3–8 (2002). doi:10.1016/S0021-9673(02)00992-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Díaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Díaz, E., Ordóñez, S. (2013). Characterisation of Catalysts and Adsorbents by Inverse Gas Chromatography. In: Auroux, A. (eds) Calorimetry and Thermal Methods in Catalysis. Springer Series in Materials Science, vol 154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11954-5_16

Download citation

Publish with us

Policies and ethics