Geometric Fundamentals

  • Mario Hirz
  • Wilhelm Dietrich
  • Anton Gfrerrer
  • Johann Lang


The chapter “Geometric Fundamentals”, introduces the reader to the mathematical and geometrical concepts which form the basis of a CAD system. It starts from scratch and leads the reader through the fields of curves, surfaces, freeform techniques, interpolation, approximation, and a range of other geometrical topics. In effect, this section might also be considered a manual for standard CAD concepts. However, rather than simply listing the methods and algorithms, this chapter actually explains the ideas behind these elements. A proper understanding of these ideas and properties can help engineers perform their jobs more effectively.


Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.


  1. 1.
    Gallier, J.: Geometric Methods and Applications. 2nd edn. Springer , New York (2011)Google Scholar
  2. 2.
    Chasles, M.: Note sur les propriétés générales du système de deux corps semblables entr’eux et placés d’une manière quelconque dans l’espace; et sur le déplacement fini ou infiniment petit d’un corps solide libre. Bull. des Sci. Mathematiques Astronomiques Physiques et Chim. 14, 321–326 (1830)Google Scholar
  3. 3.
    Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2000)Google Scholar
  4. 4.
    Blyth, T.S., Robertson, E.F.: Basic Linear Algebra. 2nd edn. Springer, Berlin (2002)Google Scholar
  5. 5.
    Stoker, J.J.: Differential Geometry. Wiley, New York (1969)Google Scholar
  6. 6.
    Walker, R.J.: Algebraic Curves. Springer, New York (1978)Google Scholar
  7. 7.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. Wellesley, Massachusetts (1993)Google Scholar
  8. 8.
    Farin, G.: Curves and Surfaces for Computer Aided Geometric Design. 2nd edn. Academic Press, Boston (1990)Google Scholar
  9. 9.
    Bernstein, S.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Commun. Math. Soc. Kharkov (2) 13, 1–2 (1912)Google Scholar
  10. 10.
    Schuhmaker, L.L.: Spline Functions: Basic Theory. Wiley, New York (1981)Google Scholar
  11. 11.
    De Boor, C.: A Practical Guide to Splines. vol. 27, rev. edn. Applied Mathematical Sciences, Springer (2001)Google Scholar
  12. 12.
    Nürnberger, G.: Approximation by Spline Functions. Springer, Berlin (1989)Google Scholar
  13. 13.
    Haase, J.C.F.: Zur Theorie der ebenen Curven \(n\)-ter Ordnung mit \((n-1)(n-2)/2\) Doppel- und Rückkehrpunkten. Math. Ann. 2, 515–548 (1870)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Overhauser, A.: Analytic Definition of Curves and Surfaces by Parabolic Blending. Technical report, Ford Motor Company (1968)Google Scholar
  15. 15.
    Röschel, O.: An interpolation subspline scheme related to B-spline techniques. In: B. Werner (ed.) Computer Graphics International ’97, pp. 131–136. IEEE Computer Society Press, Los Alamitos (1997)Google Scholar
  16. 16.
    Beresin, I.S., Shidkow, N.P.: Numerische Methoden 1, Hochschulbücher für Mathematik, vol. 70. VEB Deutscher Verlag der Wissenschaften, Berlin (1970)Google Scholar
  17. 17.
    Usmani, R.A.: Inversion of Jacobi’s tridiagonal matrix. Comput. Math. Appl. 27, 59–66 (1994)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Ascher, U.M., Greif, C.: A first course in numerical methods, Computational Science and Engineering. In: Society for Industrial and Applied Mathematics (SIAM), vol. 7. Philadelphia, USA (2011)Google Scholar
  19. 19.
    Pottmann, H., Hofer, M., Odehnal, B., Wallner, J.: Line geometry for 3D shape understanding and reconstruction. In: Pajdla, T., Matas, J. (eds.) Computer Vision—ECCV 2004, Part I. Lecture Notes in Computer Science, vol 3021, pp. 297–309. Springer (2004)Google Scholar
  20. 20.
    Odehnal, B., Stachel, H.: The upper talocalcanean join. Technical Report 127, Vienna University of Technology (2004).
  21. 21.
    Pottmann, H., Randrup, T.: Rotational and helical surface approximation for reverse engineering. Computing 60, 307–322 (1998)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Gfrerrer, A., Lang, J., Harrich, A., Hirz, M., Mayr, J.: Car side window kinematics. Comput. Aided Des. 43, 410–416 (2011)CrossRefGoogle Scholar
  23. 23.
    Harrich, A., Mayr, J., Hirz, M., Rossbacher, P., Lang, J., Gfrerrer, A., Haselwanter, A.: CAD-based synthesis of a window lifter mechanism. In: SAE World Congress, Detroit (2010) doi: 10.4271/2010-01-0009
  24. 24.
    Shafarevich, I.: Algebraic Geometry I, II. Springer, New York (1977, 1994)Google Scholar
  25. 25.
    Röschel, O.: Rationale Bézier Schiebflächen. CAD Computergraphik und Konstruktion 13, 29–33 (1989)Google Scholar
  26. 26.
    Röschel, O.: Kinematic Rational Bézier Patches I, II. Rad YAZU 10(95–108), 131–138 (1991)Google Scholar
  27. 27.
    Coons, S.: Surfaces for computer aided design. Technical Report VA 22161, MIT, available as AD 663 504 from the National Technical Information Service, Springfield (2001)Google Scholar
  28. 28.
    Ferguson, J.: Multivariable curve interpolation. JACM 2(2), 221–228 (1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mario Hirz
    • 1
  • Wilhelm Dietrich
    • 2
  • Anton Gfrerrer
    • 3
  • Johann Lang
    • 3
  1. 1.Institute of Automotive EngineeringGraz University of TechnologyGrazAustria
  2. 2.MAGNA STEYR Engineering AG & Co KGGrazAustria
  3. 3.Institute of GeometryGraz University of TechnologyGrazAustria

Personalised recommendations