Skip to main content

Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of “real life” load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Aizenberg, M. Thanawala, V. Sundar, J. Weaver, D. Morse, P. Fratzl, Materials science: skeleton of Euplectella sp.: structural hierarchy from the nanoscale to the macroscale. Science 309, 275–278 (2005)

    Google Scholar 

  2. L.J. Gibson, M.F. Ashby, Cellular Solids, 2nd edn. (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  3. P. Fratzl, R. Weinkamer, Nature‘s hierarchical materials. Prog. Mater. Sci. 52(8), 1263–1334 (2007)

    Article  Google Scholar 

  4. M.A. Meyers, P.-Y. Chen, A.Y.-M. Lin, Y. Seki, Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53(1), 1–206 (2008)

    Article  Google Scholar 

  5. C.X.F. Lam, X.M. Mo, S.H. Teoh, D.W. Hutmacher, Scaffold development using 3D printing with starch powder. Mater. Sci. Eng. C 20, 49–56 (2002)

    Article  Google Scholar 

  6. B. Leukers, H. Gulkan, S. Irsen, S. Milz, C. Tille, M. Schieker, H. Seitz, Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J. Mater. Sci. Mater. Med. 16(12), 1121–1124 (2005)

    Article  Google Scholar 

  7. D.W. Hutmacher, Scaffold design and fabrication technologies for engineering tissues- state-of-the-art and future perspectives. J. Biomater. Sci. Polym. Ed. 12(1), 107–124 (2001)

    Article  Google Scholar 

  8. R. Bibb, G. Sisias, Bone structure models using stereolithography: a technical note. Rapid Prototyping J. 8(1), 25–29 (2002)

    Article  Google Scholar 

  9. A. Woesz, J. Stampfl, P. Fratzl, Cellular solids beyond the apparent density – an experimental assessment of mechanical properties. Adv. Eng. Mater. 6(3), 134–138 (2004)

    Article  Google Scholar 

  10. I. Manjubala, A. Woesz, C. Pilz, M. Rumpler, N. Fratzl-Zelman, P. Roschger, J. Stampfl, P. Fratzl, Biomimetic mineral-organic composite scaffolds with controlled internal architecture. J. Mater. Sci. Mater. Med. 16, 1111–1119 (2005)

    Article  Google Scholar 

  11. A. Woesz, M. Rumpler, J. Stampfl, F. Varga, N. Fratzl-Zelman, P. Roschger, K. Klaushofer, P. Fratzl, Towards bone replacment materials from calcium phosphates via rapid prototyping and ceramic gelcasting. Mater. Sci. Eng. C 25(2), 181–186 (2005)

    Article  Google Scholar 

  12. E.L. Hedberg, C.K. Shih, J.J. Lemoine, M.D. Timmer, M.A. Liebschner, J.A. Jansen, A.G. Mikos, In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co- glycolic acid) composite scaffolds. Biomaterials 26(16), 3215–3225 (2005)

    Article  Google Scholar 

  13. M.H. Luxner, Modeling and Simulation of Highly Porous Open Cell Structures – Elasto-Plasticity and Localization Versus Disorder and Defects. PhD thesis, Technische Universität Wien, 2006

    Google Scholar 

  14. J. Stampfl, M.H. Luxner, H.E. Pettermann, Zellulare Werkstoffe mit frei wählbarer Zellgeometrie – Herstellung, Modellierung der mechanischen Eigenschaften und Anwendungen. Lignovisionen 14, 55–60 (2006)

    Google Scholar 

  15. I. Zein, D.W. Hutmacher, K.C. Tan, S.H. Teoh, Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4), 1169–1185 (2002)

    Article  Google Scholar 

  16. M. Agarwala, D. Bourell, J. Beaman, H. Marcus, J. Barlow, Direct selective laser sintering of metals. Rapid Prototyping J. 1(1), 26–36 (1995)

    Article  Google Scholar 

  17. J. Moon, J.E. Grau, V. Knezevic, M.J. Cima, E.M. Sachs, Ink-jet printing of binders for ceramic components. J. Am. Ceramic Soc. 85(4), 755–762 (2002)

    Article  Google Scholar 

  18. J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, M Spitzbart, Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J. Micromech. Microeng. 18(12), 125014 (2008)

    Google Scholar 

  19. S. Passinger, M.S.M. Saifullah, C. Reinhardt, K.R.V. Subramanian, B.N. Chichkov, M.E. Welland, Direct 3D patterning of TiO2 using femtosecond laser pulses. Adv. Mater. 19(9), 1218–1221 (2007)

    Article  Google Scholar 

  20. S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22(2), 132–134 (1997)

    Article  ADS  Google Scholar 

  21. S.H. Park, T.W. Lim, D.Y. Yang, R.H. Kim, K.S. Lee, Improvement of spatial resolution in nano-stereolithography using radical quencher. Macromol. Res. 14(5), 559–564 (2006)

    Google Scholar 

  22. C. Heller, N. Pucher, B. Seidl, L. Kuna, V. Satzinger, V. Schmidt, H. Lichtenegger, J. Stampfl, R. Liska, One- and two-photon activity of cross-conjugated photoinitiators with bathochromic shift. J. Polym. Sci. A Polym. Chem. 45, 3280–3291 (2007)

    Article  ADS  Google Scholar 

  23. J. Stampfl, R. Infuehr, S. Krivec, R. Liska, H. Lichtenegger, V. Satzinger, V. Schmidt, N. Matsko, W. Grogger, 3D-structuring of optical waveguides with two photon polymerization, in Material Systems and Processes for Three-Dimensional Micro- and Nanoscale Fabrication and Lithography, ed. by S.M. Kuebler, V.T. Milam, volume 1179E of Mater. Res. Soc. Symp. Proc., Warrendale, PA, 2009, pp. 1179–BB01–07

    Google Scholar 

  24. K. Dietliker, Chemistry and Technology of UV and EB Formulation for Coatings, Inks and Paints Vol. 3: Photoinitiators for Free Radical and Cationic Polymerisation (SITA Technology Ltd., London, 1991)

    Google Scholar 

  25. J. Crivello, Radiation-curable cycloaliphatic epoxy compounds, uses thereof, and compositions containing them, 2000. US6075155A

    Google Scholar 

  26. S.K. Mirle, R.J. Kumpfmiller, Photosensitive composition useful in three-dimensional part-building and having improved photospeed, 1995. WO9513565A1

    Google Scholar 

  27. M. Rumi, S. Barlow, J. Wang, J.W. Perry, S.R. Marder, Two-photon absorbing materials and two-photon-induced chemistry. Adv. Polym. Sci. 213, 1–95 (2008)

    Google Scholar 

  28. N. Pucher, A. Rosspeintner, V. Satzinger, V. Schmidt, G. Gescheidt, J. Stampfl, R. Liska. Structure-activity relationship in D-π-A-π-D-based photoinitiators for the two-photon-induced photopolymerization process. Macromolecules 42, 6519–6528 (2009)

    Article  ADS  Google Scholar 

  29. S. Lu, K.S. Anseth, Release behavior of high molecular weight solutes from poly(ethylene glycol)-based degradable network. Macromolecues 33(7), 2509–2515 (2000)

    Article  ADS  Google Scholar 

  30. M. Schuster, C. Turecek, G. Weigel, R. Saf, J. Stampfl, F. Varga, R. Liska, Gelatin-based photopolymers for bone replacement materials. J. Polym. Sci. A Polym. Chem. 47, 7078–7089 (2009)

    Article  ADS  Google Scholar 

  31. Q. Hou, D.W. Grijpma, J. Feijen, Creep-resistant elastomeric networks prepared by photocrosslinking fumaric acid monoethyl ester-functionalized poly(trimethylene carbonate) oligomers. Acta Biomater. 5(5), 543–551 (2009)

    Article  Google Scholar 

  32. H. Wei, T.Y. Lee, W. Miao, R. Fortenberry, D.H. Magers, S. Hait, A.C. Guymon, S.E. Joensson, C.E. Hoyle, Characterization and photopolymerization of divinyl fumarate. Macromolecules 40, 6172–6180 (2007)

    Article  ADS  Google Scholar 

  33. R. Liska, J. Stampfl, F. Varga, H. Gruber, S. Baudis, C. Heller, M. Schuster, H. Bergmeister, G. Weigel, C. Dworak, Composition that can be cured by polymerisation for the production of biodegradable, biocompatible crosslinkable polymers on the basis of polyvinyl alcohol, 2009. PCT Int. Appl. WO 2009065162 A2

    Google Scholar 

  34. C. Heller, M. Schwentenwein, G. Russmüller, F. Varga, J. Stampfl, R. Liska, Vinyl esters: low cytotoxicity monomers for the fabrication of biocompatible 3D scaffolds by lithography based additive manufacturing technologies. J. Polym. Sci. A Polym. Chem. 47, 6941–6954 (2009)

    Article  ADS  Google Scholar 

  35. T. Daxner, J.H. Böhm, M. Seitzberger, F.G. Rammerstorfer, Modeling of cellular metals, in Handbook of Cellular Metals, ed. by H.P. Degischer, B. Kriszt (Wiley-VCH, 2002), pp.245–380

    Google Scholar 

  36. M.H. Luxner, J. Stampfl, H.E. Pettermann, Finite element modeling concepts and linear analyses of 3D regular open cell structures. J. Mater. Sci. 40, 5859–5866, (2005)

    Article  ADS  Google Scholar 

  37. M.H. Luxner, H.E. Pettermann, Modeling and simulation of highly porous open cell structures: Elasto-plasticity and localization versus disorder and defects, in Proceedings of the IUTAM Symposium on Mechanical Properties of Cellular Materials, IUTAM, ed. by H. Zhao, N.A. Fleck, (Springer-Verlag, Berlin, 2009), pp. 125–143

    Google Scholar 

  38. H.E. Pettermann, D. Garcia Vallejo, J. Stampfl, M.H. Luxner, J. Dominguez, Viscoelastic properties of open cell kelvin foams, in Proceedings of XXII International Congress of Theoretical and Applied Mechanics (ICTAM), Adelaide, Australia, 25–29 August 2008

    Google Scholar 

  39. M.H. Luxner, J. Stampfl, H.E. Pettermann, Numerical simulations of 3D open cell structures – influence of structural irregularities on elasto-plasticity and deformation localization. Int. J. Solids Struct. 44, 2990–3003 (2007)

    Article  MATH  Google Scholar 

  40. M.H. Luxner, A. Woesz, J. Stampfl, P. Fratzl, H.E. Pettermann, A finite element study on the effects of disorder in cellular structures. Acta Biomater. 5, 381–390 (2009)

    Article  Google Scholar 

  41. M.H. Luxner, J. Stampfl, H.E. Pettermann, Nonlinear simulations on the interaction of disorder and defects in open cell structures. Comput. Mater. Sci. 47, 418–428 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Stampfl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stampfl, J., Pettermann, H.E., Liska, R. (2011). Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties. In: Gruber, P., Bruckner, D., Hellmich, C., Schmiedmayer, HB., Stachelberger, H., Gebeshuber, I. (eds) Biomimetics -- Materials, Structures and Processes. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11934-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11934-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11933-0

  • Online ISBN: 978-3-642-11934-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics