Skip to main content

Physical Realizations of Quantum Information

  • Chapter
  • First Online:
Quantum Information, Computation and Cryptography

Part of the book series: Lecture Notes in Physics ((LNP,volume 808))

Abstract

When we want to consider physical realizations of quantum information models and protocols, we have to identify specific (experimental) settings, which allow to implement the fundamental building blocks of quantum information processing. Thus, first we have to identify these building blocks and the requirements they imply for an experimental realization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Or rather, of some single physical entity. It is indeed possible to encode the two-level system in more than one particle, forming a “logical qubit” [53].

  2. 2.

    “Mesoscopic” systems [40] are usually understood as composite quantum systems which mediate between the microscopic and the macroscopic worlds, being sufficiently small for quantum effects to emerge. As a matter of fact, one of the origins of this research area is the continuing miniaturization of integrated circuitry used in traditional, “classical” computers, what implies that the quantum granularity of matter – manifest, e.g., through conductance fluctuations [17] across mesoscopic conductors, and usually assumed to be smoothed on the macroscopic scale, due to decoherence effects – has to be taken into account. Note that the line of thought is somewhat exactly opposite in our present context: Here, the question is not how much we have to reduce the size of a device to witness quantum effects, but rather whether there exists a fundamental size limit beyond which quantum effects cannot be observed anymore [2].

  3. 3.

    The coupling to uncontrolled degrees of freedom implies decoherence, noise, and decay, the characteristic features of “open system dynamics.” For example, strong resonant driving of an ionic two-level system may induce residual, non-resonant coupling to a third atomic level. If the latter remains unobserved in the specific experimental setting, what is equivalent of tracing over this part of the ionic Hilbert space, decoherence is induced on the two-dimensional subspace. Such a mechanism is believed to limit the maximally achieved gate fidelity, e.g., in the ion trap experiments in Innsbruck [44]. Possible strategies to reduce such detrimental effects are error correction and decoherence-free subspaces [50, 30].

  4. 4.

    That is why proposals of “silicon quantum computing” [28] earned a lot of attention.

  5. 5.

    Exercise: Why/when is this a good assumption?

  6. 6.

    Exercise: Convince yourselves that the norm \(\vert c_0\vert^2+\vert c_1\vert^2=1\) is conserved for all times by (10) and (11).

  7. 7.

    Verify this, as an exercise

  8. 8.

    Note that, for the terms given by (20) and (21), \(\sigma_{ij}^{(k)}\) also incorporates the “trivial” time dependence \(\exp\Big(\mp\, {{\rm i}}\, (\omega_0 - \omega)\,t\Big)\).

  9. 9.

    This uniquely defines the initial state – why?

  10. 10.

    Exercise: Derive this result with the above ansatz!

  11. 11.

    “AC” for “alternating current,” since induced by an oscillating electromagnetic field.

  12. 12.

    Exercise: Have a look at [12], and there at the sections on avoided level crossings. Interpret the AC Stark shift in terms of the quantities which characterize an avoided level crossing. In [12], the avoided crossing results from solving the stationary eigenvalue equation for the two-level Hamiltonian \(H=H_0+W\), with \(H_0=E_0\vert 0\rangle\langle 0\vert +E_1\vert 1\rangle\langle 1\vert\) and \(W=W_{00}\vert 0\rangle\langle 0\vert + W_{11}\vert 1\rangle\langle 1\vert +W_{10}\vert 1\rangle\langle 0\vert +W_{01}\vert 0\rangle\langle 1\vert \), when the eigenvalues \(E_{\pm}\) of H are plotted as a function of the detuning \(\delta =(E_1-E_0)/2\). For the identification of that treatment with our present problem, identify δ with our present definition of the detuning Δ, as the frequency mis-match between the driving field frequency and the driven atomic transition.

  13. 13.

    Exercise: Derive this result.

  14. 14.

    Mind the analogy of (39) with \(\mathrm{d}\boldsymbol{L}/\mathrm{d}t=\boldsymbol{\varOmega}\times\boldsymbol{L}\), \(\boldsymbol{L}\) the angular momentum, \(\boldsymbol{\varOmega}\) the precession frequency in the classical dynamics of rigid bodies (e.g., motion of a top) [34].

  15. 15.

    See [46, 23] for a detailed account of the involved approximations.

  16. 16.

    Exercise: Express the Bloch vector \(\boldsymbol{S}\), (36), in terms of the Pauli matrices.

  17. 17.

    Here is a short reminder: Given the Schrödinger equation

    $${{\rm i}}\hbar\vert\dot{\psi}\rangle =H\vert\psi\rangle\, ,\, \mathrm{with}\, H=H_0+V\, ,$$
    ((52))

    the “trivial” time evolution (which we suppose to be known) generated by \(H_{0}\) (which we assume to be autonomous, i.e., time-independent) can be transformed away by defining

    $$\vert\tilde{\psi}(t)\rangle =T^{-1}\vert\psi (t)\rangle , \mathrm{where} T=\mathrm e^{-{{\rm i}} H_0 t/\hbar} ;$$
    ((53))
    $$\tilde{V}(t)=T^{-1}VT , \,\tilde{H_0}=H_0 .$$
    ((54))

    The time evolution of \(\vert\tilde{\psi}\rangle\) is now given by

    $${{\rm i}}\,\hbar\vert\dot{\tilde{\psi}}\rangle =\tilde{V}\vert\tilde{\psi}\rangle$$
    ((55))

    and describes the time evolution induced by the perturbation V, relative to the unperturbed, trivial dynamics induced by \(H_{0}\).

  18. 18.

    Which the keen reader should prove, as an exercise.

  19. 19.

    See also our earlier discussion following (15) and (16). Once again, \(g\sqrt{n+1}\) fixes the typical system timescale, as will become evident hereafter.

  20. 20.

    Note that this is a special variant of the secular approximation, which is ubiquitous, e.g., also in the derivation of master equations or in nonlinear resonance analysis in classical mechanics.

  21. 21.

    Convince yourselves, as an exercise.

  22. 22.

    The “Floquet picture” [19, 49, 41, 58], where the field is once again treated classically, allows a completely analogous treatment as the “dressed state picture” [14] expressed in (43) and (47), with (essentially) the same tensor structure \(\mathcal{H}_{\mathrm{atom}}\otimes\mathcal{H}_{\mathrm{field}}\) of the underlying Hilbert space. In particular, it defines the appropriate framework when dealing with more complicated atomic/molecular specimens. The essential approximation with respect to the dressed state picture is the neglect of the change of the field state upon emission/absorption of a photon by the atom. The Floquet picture naturally incorporates co- and anti-rotating terms (the latter are neglected in the Jaynes–Cummings picture). It therefore defines an excellent framework to assess the limitations of RWA, as well as of the two-level approximation. A very nice discussion of the contribution of the anti-rotating terms can be found in Sect. III.B of [49].

  23. 23.

    Exercise: Why, in the final state detection with detectors \(\mathrm{D}_{\mathrm{e,g}}\), is it important to measure the population of the excited state before that of the ground state?

  24. 24.

    The Q factor is proportional to \(\tau_{\mathrm{cav}}\) [43].

  25. 25.

    Circular Rydberg states [27, 15, 21, 20] belong to the most “classical” eigenstates of single electron atoms: The electronic density is localized along an eccentricity zero classical Kepler trajectory and looks much like a swimming ring centered around the nucleus, in the plane defined by the quantization axis.

  26. 26.

    Note that, in principle, the simple verification of these conditional probabilities does not prove entanglement generation. The same results would be expected for the state \(\rho = ({|u\rangle}{\langle u|}\otimes{|d\rangle}{\langle d|}+{|d\rangle}{\langle d|}\otimes{|u\rangle}{\langle u|})/2\) – which is separable. This is the reason why in a “Bell experiment” one has to perform the measurement in different bases (see chapter “Quantum Probability and Quantum Information Theory”, Sect. 6.4 and references therein). In the present experiment, the coherence between \({|u_1\rangle}\otimes{|d_2\rangle}\) and \({|d_1\rangle}\otimes{|u_2\rangle}\) was therefore explicitly verified in a second, complementary measurement.

  27. 27.

    This Hamiltonian implicitly assumes the “Lamb–Dicke approximation” [10, 55], which requires that the ions be spatially localized to dimensions smaller than the addressing laser wavelength, i.e., that the position uncertainty \(\varDelta\!x\) of the center-of-mass wavefunction of the atom in the trap potential is much smaller than \(\lambda_{L}\), the laser wavelength.

  28. 28.

    Note that this evolution already implements a CPHASE (conditional phase) gate.

References

  1. Amthor, T., Reetz-Lamour, M., Westermann, S., et al.: Phys. Rev. Lett. 98, 023004 (2007)

    Article  ADS  Google Scholar 

  2. Arndt, M., Hornberger, K., Zeilinger, A.: Phys. World 18, 35 (2005)

    Google Scholar 

  3. Barenco, A., Bennett, C.H., Cleve, R., et al.: Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  4. Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Atoms. Springer, Berlin (1957)

    MATH  Google Scholar 

  5. Briegel, H.J., Popescu, S.: Entanglement and intra-molecular cooling in biological systems? – a quantum thermodynamic perspective. arXiv.org:0806.4552

    Google Scholar 

  6. Brune, M., Haroche, S., Lefevre, V., et al.: Phys. Rev. Lett. 65, 976 (1990)

    Article  ADS  Google Scholar 

  7. Brune, M., Schmidt-Kaler, F., Maali, A., et al.: Phys. Rev. Lett. 76, 1800 (1996)

    Article  ADS  MATH  Google Scholar 

  8. Cai, J., Popescu, S., Briegel, H.J.: Dynamic entanglement in oscillating molecules. arXiv.org:0809.4906

    Google Scholar 

  9. Chuu, C.S., Schreck, F., Meyrath, T.P., et al.: Phys. Rev. Lett. 95, 260403 (2005)

    Article  ADS  Google Scholar 

  10. Cirac, J.I., Blatt, R., Parkins, A.S., et al.: Phys. Rev. Lett. 70, 762 (1993)

    Article  ADS  Google Scholar 

  11. Cirac, I., Zoller, P.: Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  12. Cohen-Tannoudji, C.C., Diu, B., F. Laloë: M’canique quantique I. Hermann, Paris (1973)

    Google Scholar 

  13. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom–Photon Interactions. Wiley, New York (1992)

    Google Scholar 

  14. Cohen-Tannoudji, C., Haroche, S.: J. Phys. 30, 153 (1969)

    Article  Google Scholar 

  15. Delande, D., Gay, J.-C.: Europhys. Lett. 5, 303 (1988)

    Article  ADS  Google Scholar 

  16. Dittrich, T., Hänggi, P., Ingold, G.-L., et al.: Quantum Transport and Dissipation. Wiley-VCH, Weinheim (1998)

    MATH  Google Scholar 

  17. Di Vincenzo, D.P.: The physical implementation of quantum computation. In: Braunstein, S.L., Lo, H.-K. (eds.) Scalable Quantum Computers: Paving the Way to Realization, pp. 1–14. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  18. Engel, G.S., Calhoun, T.R., Read, E.L., et al.: Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  19. Floquet, M.G.: Ann. Sci. ’cole Norm. Sup. 12, 47 (1883)

    MathSciNet  MATH  Google Scholar 

  20. Gallagher, T.F.: Rydberg Atoms. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  21. Gay, J.-C., Delande, D., Bommier, A.: Phys. Rev. A 39, 6587 (1988)

    Article  ADS  Google Scholar 

  22. Greiner, M., Mandel, O., Esslinger, T., et al.: Nature 415, 39 (2002)

    Article  ADS  Google Scholar 

  23. Guerlin, C., Bernu, J., S. Deléglise, et al.: Nature 448, 889 (2007)

    Article  ADS  Google Scholar 

  24. Hagley, E., X. Maî tre, G. Nogues, et al.: Phys. Rev. Lett. 79, 1 (1997)

    Article  ADS  Google Scholar 

  25. Haroche, S.: Cavity quantum electrodynamics. In: Dalibard, J., Raimond, J.M., Zinn-Justin, J. (eds.) Fundamental Systems in Quantum Optics. Les Houches ’cole d’’t’ de physique th’orique, vol. 53. Elsevier, Amsterdam (1992)

    Google Scholar 

  26. Haroche, S., Raimond, J.-M.: Exploring the Quantum: Atoms, Cavities, and Photons. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  27. Hulet, R.G., Kleppner, D.: Phys. Rev. Lett. 51, 1430 (1983)

    Article  ADS  Google Scholar 

  28. Kane, B.E.: Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  29. Leggett, A.J., Chakravarty, S., Dorsey, A.T., et al.: Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  30. Lidar, D.A., Whaley, K.B.: Decoherence-free subspaces and subsystems. In: Benatti, F., Floreanini R. (eds.) Irreversible Quantum Dynamics. Lect. Notes Phys. 622, pp. 83–120. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  31. Loudon, R.: The Quantum Theory of Light. Clarendon Press, Oxford (1982)

    Google Scholar 

  32. Majer, J., Chow, J.M., Gambetta, J.M., et al.: Nature 449, 443 (2007)

    Article  ADS  Google Scholar 

  33. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  34. Marion, J.B.: Classical Dynamics of Particles and Systems. Academic, New York (1970)

    Google Scholar 

  35. Meschede, D., Walther, H., Müller, G.: Phys. Rev. Lett. 54, 551 (1985)

    Article  ADS  Google Scholar 

  36. Mintert, F., Wunderlich, C.: Phys. Rev. Lett. 87, 257904 (2001)

    Article  ADS  Google Scholar 

  37. Mintert, F., Wunderlich, C.: Erratum: Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 87, 257904 (2001)

    Article  ADS  Google Scholar 

  38. Mintert, F., Wunderlich, C.: Erratum: Ion-trap quantum logic using long-wavelength radiation. Phys. Rev. Lett. 91, 29902 (2003)

    Article  ADS  Google Scholar 

  39. Mollow, B.R.: Phys. Rev. 188, 1969 (1969)

    Article  ADS  Google Scholar 

  40. Richter, K.: Semiclassical Theory of Mesoscopic Quantum Systems. Springer Tracts in Modern Physics. Springer, Berlin (2000)

    Google Scholar 

  41. Ritus, V.I.: Zh. Eksp. Teor. Fiz. 51, 1492 (1966)

    Google Scholar 

  42. Roos, C., Zeiger, T., Rohde, H., et al.: Phys. Rev. Lett. 83, 4713 (1999)

    Article  ADS  Google Scholar 

  43. Sargent III, M., Scully, M.O., Lamb, W.E., Jr.: Laser Physics. Addison-Wesley, Reading (1974)

    Google Scholar 

  44. Schmidt-Kaler, F., Häffner, H., Riebe, M., et al.: Nature 422, 408 (2003)

    Article  ADS  Google Scholar 

  45. Schrader, D., Dotsenko, I., Khudaverdyan, M., et al.: Phys. Rev. Lett. 93, 150501 (2004)

    Article  ADS  Google Scholar 

  46. Schuster, D.I., Houck, A.A., Schreier, J.A., et al.: Nature 445, 515 (2007)

    Article  ADS  Google Scholar 

  47. Science and Technology. Orion’s Belter: The Economist, p. 77, 17 Feb 2007

    Google Scholar 

  48. Shatokhin, V., Müller, C.A., Buchleitner, A.: Phys. Rev. Lett. 94, 043603 (2005)

    Article  ADS  Google Scholar 

  49. Shirley, J.H.: Phys. Rev. B 138, 979 (1965)

    Article  ADS  Google Scholar 

  50. Shor, P.W.: Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  51. Sillanpää, M.A., Park, J.I., Simmonds, R.W.: Nature 449, 438 (2007)

    Article  ADS  Google Scholar 

  52. Sirko, L., Buchleitner, A., Walther, H.: Opt. Commun. 78, 403 (1990)

    Article  ADS  Google Scholar 

  53. Tesch, C.M., de Vivie-Riedle, R.: Phys. Rev. Lett. 89, 157901 (2002)

    Article  ADS  Google Scholar 

  54. Varcoe, B.T.H., Brattke, S., Weidinger, M., et al.: Nature 403, 743 (2000)

    Article  ADS  Google Scholar 

  55. Vogel, W., Welsch, D.-G., Wallentowitz, S.: Quantum Optics – An Introduction. Wiley-VHC, Weinheim (2001)

    MATH  Google Scholar 

  56. Wallraff, A., Schuster, D.I., Blais, A., et al.: Phys. Rev. Lett. 95, 060501 (2005)

    Article  ADS  Google Scholar 

  57. Wellens, T., Buchleitner, A., Maassen, H., et al.: Phys. Rev. Lett. 85, 3361 (2000)

    Article  ADS  Google Scholar 

  58. Zeldovich, Y.B.: JETP (Soviet Physics) 24, 1006 (1967)

    ADS  Google Scholar 

Download references

Acknowledgments

Partial support by VolkswagenStiftung is gratefully acknowledged. F. de Melo also acknowledges financial support by Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. de Melo or A. Buchleitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

de Melo, F., Buchleitner, A. (2010). Physical Realizations of Quantum Information. In: Benatti, F., Fannes, M., Floreanini, R., Petritis, D. (eds) Quantum Information, Computation and Cryptography. Lecture Notes in Physics, vol 808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11914-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11914-9_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11913-2

  • Online ISBN: 978-3-642-11914-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics