Skip to main content

Quantum Algorithms

  • Chapter
  • First Online:
Quantum Information, Computation and Cryptography

Part of the book series: Lecture Notes in Physics ((LNP,volume 808))

Abstract

The idea to put computing machines on a physical footing and to use the laws of physics as the basis of a computer already dates back several decades. In the 1980s, Feynman [24,25] was the first to consider quantum mechanics from a computational point of view by observing that the simulation of quantum mechanical systems on a classical computer seemed to require an increase in complexity exponential in the size of the system. He asked whether this exponential overhead was inevitable, and if it was possible to design a universal quantum computer, which could simulate any quantum system without the exponential overhead. In 1985 Deutsch [17] defined the model of the quantum Turing machine, generalizing the classical Turing machine to follow the laws of quantum mechanics. Yao later showed that it was equivalent to the quantum circuit model, also defined by Deutsch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(\lceil x\rceil\) denotes the smallest integer larger than \(x\in{\mathbb{R}}\).

  2. 2.

    \(\lfloor x\rfloor\) denotes the largest integer smaller than \(x\in{\mathbb{R}}\).

References

  1. Aharonov, D., Ambainis, A., Kempe, J., et al.: Quantum walks on graphs. In: Proceedings of the 33th ACM Symposium on Theory of Computing (STOC), pp. 50–59. ACM Press, New York (2001)

    Google Scholar 

  2. Aharonov, D., van Dam, W., Kempe, J., et al.: Adiabatic quantum computation is equivalent to standard quantum computation. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 42–51. IEEE Computer Society, Washington (2004)

    Google Scholar 

  3. Aleliunas, R., Karp, R., Lipton, R., et al.: Random walks, universal traversal sequences, and the time complexity of maze problems. In: Proceedings of the 20th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 218–223. IEEE Computer Society, Washington (1979)

    Google Scholar 

  4. Ambainis, A.: SIGACT News 35, 22 (2004)

    Article  Google Scholar 

  5. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 22–31. IEEE Computer Society, Washington (2004)

    Google Scholar 

  6. Ambainis, A., Bach, E., Nayak, A., et al.: One-dimensional quantum walks. In: Proceedings of the 33th Annual ACM Symposium on Theory of Computing (STOC), pp. 60–69. ACM Press, New York (2001)

    Google Scholar 

  7. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1099–1108. ACM Press, New York (2005)

    Google Scholar 

  8. Beals, R.: Quantum computation of Fourier transforms over symmetric groups. In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC), pp. 48–53. ACM Press, New York (1997)

    Google Scholar 

  9. Bennett, Ch.: IBM J. Res. Dev. 17, 5225 (1973)

    Article  Google Scholar 

  10. Bennett, C.H., Bernstein, E., Brassard, G., et al.: SIAM J. Sci. Comput. 26, 1510 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bernstein, E., Vazirani, U.: SIAM J. Sci. Comput. 26, 1411 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brassard, G., Hoyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. In: Proceedings of the 3rd Latin American Symposium on Theoretical Informatics (LATIN’98). Lecture Notes in Computer Science, vol. 1380, p. 163. Springer, Heidelberg (1998)

    Google Scholar 

  13. Buhrman, H., Dürr, C., Heiligman, M., et al: SIAM J. Sci. Comput. 34, 1324 (2005)

    Article  MATH  Google Scholar 

  14. Buhrman, H., Spalek, R.: Quantum verification of matrix products. In: Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 880–889. ACM Press, Miami (2006)

    Google Scholar 

  15. Childs, A.M., Cleve, R., Deotto, E., et al.: Exponential algorithmic speedup by a quantum walk. In: Proceedings of the 35th Annual ACM Symposium on the Theory of Computing (STOC), pp. 59–68. ACM Press, New York (2003)

    Google Scholar 

  16. van Dam, W., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum computation? In: Proceedings of the 42nd Annual IEEE Symposium on Foundations of Computer Science (FOCS), IEEE Computer Society, Washington, pp. 279–287 (2001)

    Google Scholar 

  17. Deutsch, D.: Proc. R. Soc. Lond. A 400, 97 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Deutsch, D., Barenco, A., Ekert, A.: Proc. R. Soc. Lond. A 449, 669 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Deutsch, D., Jozsa, R.: Proc. R. Soc. Lond. A 439, 553 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Di Vincenzo, D.P.: Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  21. Dürr, C., Heiligman, M., Høyer, P., et al.: Quantum query complexity of some graph problems. In: Proceedings of the 31st International Colloquium on Automata, Languages, and Programming (ICALP). Lecture Notes in Computer Science, vol. 3142, p. 481. Springer, Heidelberg (2004)

    Google Scholar 

  22. Farhi, E., Goldstone, J., Gutmann, S., et al.: Science 292, 472 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Farhi, E., Gutmann, S.: Phys. Rev. A 58, 915 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  24. Feynman, R.: Int. J. Theor. Phys. 21, 467 (1982)

    Article  MathSciNet  Google Scholar 

  25. Feynman, R.: Opt. News 11, 11 (1985)

    Article  Google Scholar 

  26. Friedl, K., Ivanyos, G., Magniez, F., et al.: Hidden translation and orbit coset in quantum computing. In: Proceedings of the 35th ACM Symposium on Theory of Computing (STOC), pp. 1–9. ACM Press, New York (2003)

    Google Scholar 

  27. Grigni, M., Schulman, L., Vazirani, M., et al.: Quantum mechanical algorithms for the nonabelian hidden subgroup problem. In: Proceedings of the 33rd ACM Symposium on the Theory of Computing (STOC), pp. 68–74. ACM Press, New York (2001)

    Google Scholar 

  28. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th ACM Symposium on the Theory of Computing (STOC), pp. 212–219. ACM Press, Philadelphia (1996)

    Google Scholar 

  29. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. In: Proceedings of the 34th ACM Symposium on the Theory of Computing (STOC), pp. 653–658. ACM Press, New York. (2002)

    Google Scholar 

  30. Hallgren, S., Moore, C., Rötteler, M., et al.: Limitations of quantum coset states for graph isomorphism. In: Proceedings of the 38th ACM Symposium on the Theory of Computing (STOC), pp. 604–617. ACM Press, New York (2006)

    Google Scholar 

  31. Hallgren, S., Russell, A., Ta-Shma, A.: Normal subgroup reconstruction and quantum computation using group representations. In: Proceedings of the 32nd ACM Symposium on the Theory of Computing (STOC), pp. 627–635. ACM Press, New York (2000)

    Google Scholar 

  32. Kempe, J.: Contemp. Phys. 44, 302 (2003)

    Article  ADS  Google Scholar 

  33. Kempe, J., Shalev, A.: The hidden subgroup problem and permutation group theory. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1118–1125. ACM Press, New York (2005)

    Google Scholar 

  34. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. Graduate Series in Mathematics, vol. 47. AMS, Providence (2002)

    Google Scholar 

  35. Kuperberg, G.: SIAM J. Sci. Comput. 35, 170 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. In: Proceedings of the 32nd International Colloquium on Automata, Languages, and Programming (ICALP), pp. 1312–1325. Lecture notes in computer science 3580, Springer-Verlag, Berlin (2005)

    Google Scholar 

  37. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1109–1117. ACM Press, New York (2005)

    Google Scholar 

  38. Moore, C., Russell, A., Schulman, L.: The symmetric group defies strong Fourier sampling. In: Proceedings of the 46th IEEE Symposium on Foundations of Computer Science (FOCS). IEEE Computer Society, Washington (2005)

    Google Scholar 

  39. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  40. Preskill, J.: Quantum information and computation. Lecture Notes http://www.theory.caltech.edu/people/preskill/ph229/

  41. Regev, O.: Quantum computation and lattice problems. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 520–529. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  42. Roland, J., Cerf, N.: Phys. Rev. A 65, 042308 (2002)

    Article  ADS  Google Scholar 

  43. Shenvi, N., Kempe, J., Whaley, K.B.: Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  44. Shor, P.W.: Algorithms for quantum computation: Discrete log and factoring. In: Proceedings of the 35th IEEE Annual Symposium on the Foundations of Computer Science (FOCS), pp. 124–134. IEEE Computer Society, Los Alamitos (1994)

    Google Scholar 

  45. Shor, P.W.: SIAM J. Comput. 26, 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Simon, D.: SIAM J. Comput. 26, 1474 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Kempe or T. Vidick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-VerlagBerlin Heidelberg

About this chapter

Cite this chapter

Kempe, J., Vidick, T. (2010). Quantum Algorithms. In: Benatti, F., Fannes, M., Floreanini, R., Petritis, D. (eds) Quantum Information, Computation and Cryptography. Lecture Notes in Physics, vol 808. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11914-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11914-9_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11913-2

  • Online ISBN: 978-3-642-11914-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics