Skip to main content

The Potential of Selectively Cultured Adult Stem Cells Re-implanted in Tissues

  • Chapter
  • First Online:
Stem Cell Engineering

Abstract

For stem cell research the focus in the past has been on embryonic stem cells, cells from which humans are initially constructed, but which are limited in availability. A new direction in stem cell research is looking at a different kind of pluripotent cells – adult stem cells, which are responsible for maintenance and repair of tissue. To retrieve and grow stem cells remains an important challenge in medicine, but carries the hope to cure many diseases. Pluripotent adult stem cells have been found in many organs and also in cancer tumors. Adult stem cells can both self-renew and differentiate to replace compromised tissue in the organ where they reside. If single adult tumor stem cells can re-grow into a new tumor, just as adult stem cells can rebuild a physiological organ, the potential of adult stem cells would be significant in new cancer therapy and organ engineering approaches.

This chapter introduces the methods behind isolation of adult stem cells, in vitro culturing, characterization, genetic manipulation for imaging purposes, and the promising results of re-implantation into healthy tissues. Adult stem cells derived from human early-stage prostate tumors are used in a newly developed, novel research model. Since the environmental niche is an important factor for stem cell growth ex vivo, stem cell isolation is achieved via culturing in a characterized environment that mimics the stem cell niche for these types of adult stem cells. The human prostate tumor stem cell niche is described and prostate tumor stem cells (PrTuSCs) are used to show the so-called stem cell center (SCC) growth in cell culture. It is also demonstrated how PrTuSCs are epigenetically altered with eGFP for tracking and imaging purposes. Cultured PrTuSCs are characterized as adult stem cells by stem cell marker analysis and expression of stem cell-associated transcription factors. To further demonstrate the pluripotent potential of PrTuSC, the effects of re-implantation into healthy tissues in vivo are presented in the orthotopic xenografting and tissue recombination methods. When implanted into immune-suppressed SCID mice, results show that cultured PrTuSC not only can re-grow a cancerous prostate tumor, but, depending on the implantation site and its microenvironment, also have the ability to generate normal benign human prostate glandular structures in vivo. The dorsal mouse-skinfold window chamber method is introduced as an experimental model that allows direct observation of implanted stem cells and their behavioral characteristics, e.g., promotion of healthy or tumor-associated angiogenesis, which is critical in tissue renewal and cancer metastasis.

Clinical applications in the near future might include short-term SCC-colony counts as an in vitro surrogate method that shows capability of predicting the probability of tumor re-occurrence and progression. Finally, it is discussed that methodologies similar to this may be used to derive human tumor stem cells from biopsies or from surgical specimens of other human epithelial tumor sources, e.g., breast, colorectal, liver, and others. Using adult stem cell models will provide many future applications in medicine covering new strategies in cancer diagnosis and treatment as well as promising regenerative tissue and organ reconstruction approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim BH. Sanal theory. J Acad Med Sci. 1965; 108:39–62 (DPR Korea).

    Google Scholar 

  2. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, Rafii S. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000; 95(3):952–958.

    Google Scholar 

  3. Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006; 311(5769):1880–1885.

    Article  Google Scholar 

  4. Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell. 1989; 57(2):201–209.

    Article  Google Scholar 

  5. Blanpain C, Horsley V, Fuchs E. Epithelial stem cells: turning over new leaves. Cell. 2007; 128(3):445–458.

    Article  Google Scholar 

  6. Croagh D, Phillips WA, Redvers R, Thomas RJ, Kaur P. Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers. Stem Cells. 2007; 25(2):313–318.

    Article  Google Scholar 

  7. Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA. 2006; 103(24):9226–9231.

    Article  Google Scholar 

  8. Maeshima A. Label-retaining cells in the kidney: origin of regenerating cells after renal ischemia. Clin Exp Nephrol. 2007; 11(4):269–274.

    Article  Google Scholar 

  9. Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D, Camussi G. Isolation of renal progenitor cells from adult human kidney. Am J Pathol. 2005; 166(2):545–555.

    Article  Google Scholar 

  10. Hong KU, Reynolds SD, Giangreco A, Hurley CM, Stripp BR. Clara cell secretory protein-expressing cells of the airway neuroepithelial body microenvironment include a label-retaining subset and are critical for epithelial renewal after progenitor cell depletion. Am J Respir Cell Mol Biol. 2001; 24(6):671–681.

    Google Scholar 

  11. Borthwick DW, Shahbazian M, Krantz QT, Dorin JR, Randell SH. Evidence for stem-cell niches in the tracheal epithelium. Am J Respir Cell Mol Biol. 2001; 24(6):662–670.

    Google Scholar 

  12. Duvillie B, Attali M, Aiello V, Quemeneur E, Scharfmann R. Label-retaining cells in the rat pancreas: location and differentiation potential in vitro. Diabetes. 2003; 52(8):2035–2042.

    Article  Google Scholar 

  13. Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA. 2000; 97(26):14720–14725.

    Article  Google Scholar 

  14. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci. 2005; 8(6):723–729.

    Article  Google Scholar 

  15. Kinbara H, Cunha GR, Boutin E, Hayashi N, Kawamura J. Evidence of stem cells in the adult prostatic epithelium based upon responsiveness to mesenchymal inductors. Prostate. 1996; 29(2):107–116.

    Article  Google Scholar 

  16. Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science. 2005; 307(5717):1904–1909.

    Article  Google Scholar 

  17. Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990; 61(7):1329–1337.

    Article  Google Scholar 

  18. Bendall SC, Stewart MH, Menendez P, George D, Vijayaragavan K, Werbowetski-Ogilvie T, Ramos-Mejia V, Rouleau A, Yang J, Bosse M, Lajoie G, Bhatia M. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 2007; 448(7157):1015–1021.

    Article  Google Scholar 

  19. Reilly KM, Van Dyke T. It takes a (dysfunctional) village to raise a tumor. Cell. 2008; 135(3):408–410.

    Article  Google Scholar 

  20. Sneddon JB, Werb Z. Location, location, location: the cancer stem cell niche. Cell Stem Cell. 2007; 1(6):607–611.

    Article  Google Scholar 

  21. World-Health-Organization, WHO. Cancer (Fact sheet No 297). http://www.who.int/mediacentre/factsheets/fs297/en/index.html; Feb 2009.

  22. Nowell PC. Mechanisms of tumor progression. Cancer Res. 1986; 46(5):2203–2207.

    Google Scholar 

  23. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003; 3(12):895–902.

    Article  Google Scholar 

  24. Cho KR, Vogelstein B. Genetic alterations in the adenoma–carcinoma sequence. Cancer. 1992; 70(6 Suppl):1727–1731.

    Article  Google Scholar 

  25. Fearon ER, Hamilton SR, Vogelstein B. Clonal analysis of human colorectal tumors. Science. 1987; 238(4824):193–197.

    Article  Google Scholar 

  26. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008; 14(6):818–829.

    Article  Google Scholar 

  27. Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol. 2003; 15(6):740–746.

    Article  Google Scholar 

  28. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008; 133(4):704–715.

    Article  Google Scholar 

  29. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, Knuechel R, Kirchner T. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci USA. 2001; 98(18):10356–10361.

    Article  Google Scholar 

  30. Barker N, Clevers H. Tumor environment: a potent driving force in colorectal cancer? Trends Mol Med. 2001; 7(12):535–537.

    Article  Google Scholar 

  31. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. Opinion: migrating cancer stem cells – an integrated concept of malignant tumour progression. Nat Rev Cancer. 2005; 5(9):744–749.

    Article  Google Scholar 

  32. Bissell MJ, Radisky D. Putting tumours in context. Nat Rev Cancer. 2001; 1(1):46–54.

    Article  Google Scholar 

  33. Fiñones RR, Wu C, Yeargin JE, Le T, Baird SM, Haas M. Androgen-independent cancer cells cultured from stage 1 human prostate adenocarcinomas generate local prostate cancers in vivo. Prostate. 2010; 70(2):99–110.

    Google Scholar 

  34. Fiñones RR, Yeargin JE, Baird SM, Haas M. Inducing pluripotency and immortality in prostate tumor cells: A stem cell model of cancer progression. Material Science and Engineering. San Diego, University of California San Diego. Ph.D. (Finones 2009): 176.

    Google Scholar 

  35. Neuzil J, Stantic M, Zobalova R, Chladova J, Wang X, Prochazka L, Dong L, Andera L, Ralph SJ. Tumour-initiating cells vs. cancer ‘stem’ cells and CD133: what’s in the name? Biochem Biophys Res Commun. 2007; 355(4):855–859.

    Article  Google Scholar 

  36. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008; 456(7222):593–598.

    Article  Google Scholar 

  37. Baker M. Cancer stem cells, becoming common. Nature Reports Stem Cells; Published online: 3 December 2008 | doi:10.1038/stemcells.2008.153.

    Google Scholar 

  38. Baker M. Melanoma in mice casts doubt on scarcity of cancer stem cells. Nature. 2008; 456(7222): 553.

    Article  Google Scholar 

  39. Eaves CJ. Cancer stem cells: here, there, everywhere? Nature. 2008; 456(7222):581–582.

    Article  Google Scholar 

  40. Roberts PE. Isolation and establishment of human tumor stem cells. Methods Cell Biol. 2008; 86:325–342.

    Article  Google Scholar 

  41. Kiernan JA. Histological and histochemical methods: theory and practice. Ed. 3. Oxford: Butterworth Heinemann; 1999.

    Google Scholar 

  42. Litvinov IV, Vander Griend DJ, Xu Y, Antony L, Dalrymple SL, Isaacs JT. Low-calcium serum-free defined medium selects for growth of normal prostatic epithelial stem cells. Cancer Res. 2006; 66(17):8598–8607.

    Article  Google Scholar 

  43. Tuxhorn JA, Ayala GE, Rowley DR. Reactive stroma in prostate cancer progression. J Urol. 2001; 166(6):2472–2483.

    Article  Google Scholar 

  44. Gao J, Arnold JT, Isaacs JT. Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells. Cancer Res. 2001; 61(13):5038–5044.

    Google Scholar 

  45. Hayward SW, Haughney PC, Rosen MA, Greulich KM, Weier HU, Dahiya R, Cunha GR. Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation. 1998; 63(3):131–140.

    Article  Google Scholar 

  46. Wang Y, Revelo MP, Sudilovsky D, Cao M, Chen WG, Goetz L, Xue H, Sadar M, Shappell SB, Cunha GR, Hayward SW. Development and characterization of efficient xenograft models for benign and malignant human prostate tissue. Prostate. 2005; 64(2):149–159.

    Article  Google Scholar 

  47. Ishii K, Shappell SB, Matusik RJ, Hayward SW. Use of tissue recombination to predict phenotypes of transgenic mouse models of prostate carcinoma. Lab Invest. 2005; 85(9):1086–1103.

    Article  Google Scholar 

  48. Brody J, Young P, Cunha GR. Renal capsule grafting. http://mammary.nih.gov/tools/mousework/Cunha001/index.html; 1998.

  49. Wang Y, Xue H, Cutz J, Bayani J, Mawji NR, Chen WG, Goetz LJ, Hayward SW, Sadar MD, Gilks CB, Gout PW, Squire JA, Cunha GR, Wang YZ. An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab Invest. 2005; 85(11):1392–1404.

    Google Scholar 

  50. Cunha GR, Donjacour AA, Cooke PS, Mee S, Bigsby RM, Higgins SJ, Sugimura Y. The endocrinology and developmental biology of the prostate. Endocr Rev. 1987; 8(3):338–362.

    Article  Google Scholar 

  51. Donjacour AA, Rosales A, Higgins SJ, Cunha GR. Characterization of antibodies to androgen-dependent secretory proteins of the mouse dorsolateral prostate. Endocrinology. 1990; 126(3):1343–1354.

    Article  Google Scholar 

  52. Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, Yang A, Montironi R, McKeon F, Loda M. p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol. 2000; 157(6):1769–1775.

    Article  Google Scholar 

  53. Senoo M, Pinto F, Crum CP, McKeon F. p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell. 2007; 129(3):523–536.

    Article  Google Scholar 

  54. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG, Pienta KJ, Ghosh D, Chinnaiyan AM. alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA. 2002; 287(13):1662–1670.

    Article  Google Scholar 

  55. Cunha GR, Hayashi N, Wong YC. Regulation of differentiation and growth of normal adult and neoplastic epithelia by inductive mesenchyme. Cancer Surv. 1991; 11:73–90.

    Google Scholar 

  56. Wong YC, Cunha GR, Hayashi N. Effects of mesenchyme of the embryonic urogenital sinus and neonatal seminal vesicle on the cytodifferentiation of the Dunning tumor: ultrastructural study. Acta Anat (Basel) . 1992; 143(2):139–150.

    Article  Google Scholar 

  57. Algire GH. An adaptation of the transparent-chamber technique to the mouse. J Natl Cancer Inst. 1943; 4:1–11.

    Google Scholar 

  58. Algire GH, Legallais FY. The transparent chamber technique in the mouse in the study of tumor histo-physiology. Fed Proc. 1948; 7(1 Pt 1):268.

    Google Scholar 

  59. Druecke D, Langer S, Lamme E, Pieper J, Ugarkovic M, Steinau HU, Homann HH. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. J Biomed Mater Res A. 2004; 68(1):10–18.

    Article  Google Scholar 

  60. Laschke MW, Haufel JM, Thorlacius H, Menger MD. New experimental approach to study host tissue response to surgical mesh materials in vivo. J Biomed Mater Res A. 2005; 74(4):696–704.

    Google Scholar 

  61. Menger MD, Walter P, Hammersen F, Messmer K. Quantitative analysis of neovascularization of different PTFE-implants. Eur J Cardiothorac Surg. 1990; 4(4):191–196.

    Article  Google Scholar 

  62. Menger MD, Hammersen F, Walter P, Messmer K. Neovascularization of prosthetic vascular grafts. Quantitative analysis of angiogenesis and microhemodynamics by means of intravital microscopy. Thorac Cardiovasc Surg. 1990; 38(3):139–145.

    Article  Google Scholar 

  63. Rucker M, Laschke MW, Junker D, Carvalho C, Schramm A, Mulhaupt R, Gellrich NC, Menger MD. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials. 2006; 27(29):5027–5038.

    Article  Google Scholar 

  64. Contaldo C, Meier C, Elsherbiny A, Harder Y, Trentz O, Menger MD, Wanner GA. Human recombinant erythropoietin protects the striated muscle microcirculation of the dorsal skinfold from postischemic injury in mice. Am J Physiol Heart Circ Physiol. 2007; 293(1):H274–H283.

    Article  Google Scholar 

  65. Steinbauer M, Harris AG, Abels C, Messmer K. Characterization and prevention of phototoxic effects in intravital fluorescence microscopy in the hamster dorsal skinfold model. Langenbecks Arch Surg. 2000; 385(4):290–298.

    Article  Google Scholar 

  66. Schacht V, Berens D, von Rautenfeld C. Abels, The lymphatic system in the dorsal skinfold chamber of the Syrian golden hamster in vivo. Arch Dermatol Res. 2004; 295(12):542–548.

    Article  Google Scholar 

  67. Makale MT, Lin JT, Calou RE, Tsai AG, Chen PC, Gough DA. Tissue window chamber system for validation of implanted oxygen sensors. Am J Physiol Heart Circ Physiol. 2003; 284(6):H2288–H2294.

    Google Scholar 

  68. Makale MT, Chen PC, Gough DA. Variants of the tissue-sensor array window chamber. Am J Physiol Heart Circ Physiol. 2005; 289(1):H57–H65.

    Article  Google Scholar 

  69. Borgstrom P, Hillan KJ, Sriramarao P, Ferrara N. Complete inhibition of angiogenesis and growth of microtumors by anti-vascular endothelial growth factor neutralizing antibody: novel concepts of angiostatic therapy from intravital videomicroscopy. Cancer Res. 1996; 56(17):4032–4039.

    Google Scholar 

  70. Huang Q, Shan S, Braun RD, Lanzen J, Anyrhambatla G, Kong G, Borelli M, Corry P, Dewhirst MW, Li CY. Noninvasive visualization of tumors in rodent dorsal skin window chambers. Nat Biotechnol. 1999; 17(10):1033–1035.

    Article  Google Scholar 

  71. Lindner LH, Eichhorn ME, Eibl H, Teichert N, Schmitt-Sody M, Issels RD, Dellian M. Novel temperature-sensitive liposomes with prolonged circulation time. Clin Cancer Res. 2004; 10(6):2168–2178.

    Article  Google Scholar 

  72. Tang Y, Borgstrom P, Maynard J, Koziol J, Hu Z, Garen A, Deisseroth A. Mapping of angiogenic markers for targeting of vectors to tumor vascular endothelial cells. Cancer Gene Ther. 2007; 14(4):346–353.

    Article  Google Scholar 

  73. Cabrales P, Intaglietta M. Time-dependant oxygen partial pressure in capillaries and tissue in the hamster window chamber model. Antioxid Redox Signal. 2007; 9(7):845–853.

    Article  Google Scholar 

  74. Menger MD, Laschke MW, Vollmar B. Viewing the microcirculation through the window: some twenty years experience with the hamster dorsal skinfold chamber. Eur Surg Res. 2002; 34(1–2):83–91.

    Article  Google Scholar 

  75. Brown EB, Campbell RB, Tsuzuki Y, Xu L, Carmeliet P, Fukumura D, Jain RK. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med. 2001; 7(7):864–868.

    Article  Google Scholar 

  76. Chary SR, Jain RK. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching. Proc Natl Acad Sci USA. 1989; 86(14):5385–5389.

    Article  Google Scholar 

  77. Duda DG, Fukumura D, Munn LL, Booth MF, Brown EB, Huang P, Seed B, Jain RK. Differential transplantability of tumor-associated stromal cells. Cancer Res. 2004; 64(17):5920–5924.

    Article  Google Scholar 

  78. Endrich B, Hammersen F, Gotz A, Messmer K. Microcirculatory blood flow, capillary morphology and local oxygen pressure of the hamster amelanotic melanoma A-Mel-3. J Natl Cancer Inst. 1982; 68(3):475–485.

    Google Scholar 

  79. Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K, Jain RK. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 1992; 52(23):6553–6560.

    Google Scholar 

  80. Li CY, Shan S, Huang Q, Braun RD, Lanzen J, Hu K, Lin P, Dewhirst MW. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst. 2000; 92(2):143–147.

    Article  Google Scholar 

  81. Lichtenbeld HC, Barendsz-Janson AF, van Essen H, Struijker Boudier H, Griffioen AW, Hillen HF. Angiogenic potential of malignant and non-malignant human breast tissues in an in vivo angiogenesis model. Int J Cancer. 1998; 77(3):455–459.

    Article  Google Scholar 

  82. Papenfuss HD, Gross JF, Intaglietta M, Treese FA. A transparent access chamber for the rat dorsal skin fold. Microvasc Res. 1979; 18(3):311–318.

    Article  Google Scholar 

  83. Schneider G, Seidel R, Uder M, Wagner D, Weinmann HJ, Kramann B. In vivo microscopic evaluation of the microvascular behavior of FITC-labeled macromolecular MR contrast agents in the hamster skinfold chamber. Invest Radiol. 2000; 35(9):564–570.

    Article  Google Scholar 

  84. Wu NZ, Klitzman B, Dodge R, Dewhirst MW. Diminished leukocyte-endothelium interaction in tumor microvessels. Cancer Res. 1992; 52(15):4265–4268.

    Google Scholar 

  85. Torres Filho IP, Hartley-Asp B, Borgstrom P. Quantitative angiogenesis in a syngeneic tumor spheroid model. Microvasc Res. 1995; 49(2):212–226.

    Article  Google Scholar 

  86. Endrich B, Asaishi K, Gotz A, Messmer K. Technical report–a new chamber technique for microvascular studies in unanesthetized hamsters. Res Exp Med (Berl) . 1980; 177(2):125–134.

    Article  Google Scholar 

  87. Chen DC, Agopian VG, Avansino JR, Lee JK, Farley SM, Stelzner M. Optical tissue window: a novel model for optimizing engraftment of intestinal stem cell organoids. J Surg Res. 2006; 134(1):52–60.

    Article  Google Scholar 

  88. Moosmann S, Hutter J, Moser C, Krombach F, Huss R. Milieu-adopted in vitro and in vivo differentiation of mesenchymal tissues derived from different adult human CD34-negative progenitor cell clones. Cells Tissues Organs. 2005; 179(3):91–101.

    Article  Google Scholar 

  89. Torres Filho IP, Leunig M, Yuan F, Intaglietta M, Jain RK. Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc Natl Acad Sci USA. 1994; 91(6):2081–2085.

    Article  Google Scholar 

  90. Folkman J. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg. 1972; 175(3):409–416.

    Article  Google Scholar 

  91. Stitt AW, McGoldrick C, Rice-McCaldin A, McCance DR, Glenn JV, Hsu DK, Liu FT, Thorpe SR, Gardiner TA. Impaired retinal angiogenesis in diabetes: role of advanced glycation end products and galectin-3. Diabetes. 2005; 54(3):785–794.

    Article  Google Scholar 

  92. Moulton KS. Plaque angiogenesis and atherosclerosis. Curr Atheroscler Rep. 2001; 3(3):225–233.

    Article  Google Scholar 

  93. Kahlon R, Shapero J, Gotlieb AI. Angiogenesis in atherosclerosis. Can J Cardiol. 1992; 8(1):60–64.

    Google Scholar 

  94. Ohno-Matsui K, Morita I, Tombran-Tink J, Mrazek D, Onodera M, Uetama T, Hayano M, Murota SI, Mochizuki M. Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J Cell Physiol. 2001; 189(3):323–333.

    Article  Google Scholar 

  95. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995; 1(1):27–31.

    Article  Google Scholar 

  96. Schmid-Schonbein GW. Capillary plugging by granulocytes and the no-reflow phenomenon in the microcirculation. Fed Proc. 1987; 46(7):2397–2401.

    Google Scholar 

  97. Zweifach BW, Kovalcheck S, De Lano F, Chen P. Micropressure-flow relationships in a skeletal muscle of spontaneously hypertensive rats. Hypertension. 1981; 3(5): 601–614.

    Article  Google Scholar 

  98. Zweifach BW, Lipowsky HH, eds. Pressure-flow relations in blood and lymph microcirculation. In: Renkin EM, Michel CC, eds. Handbook of physiology, section 2: the cardiovascular system. Bethesda: American Physiological Society; 1984, pp. 251–307.

    Google Scholar 

  99. Zhou A, Egginton S, Hudlicka O, Brown MD. Internal division of capillaries in rat skeletal muscle in response to chronic vasodilator treatment with alpha1-antagonist prazosin. Cell Tissue Res. 1998; 293(2):293–303.

    Article  Google Scholar 

  100. Egginton S, Zhou AL, Brown MD, Hudlicka O. Unorthodox angiogenesis in skeletal muscle. Cardiovasc Res. 2001; 49(3):634–646.

    Article  Google Scholar 

  101. Hueck IS, Rossiter K, Artmann GM, Schmid-Schonbein GW. Fluid shear attenuates endothelial pseudopodia formation into the capillary lumen. Microcirculation. 2008; 15(6):531–542.

    Article  Google Scholar 

  102. Hueck IS, Hollweg HG, Schmid-Schonbein GW, Artmann GM. Chlorpromazine modulates the morphological macro- and micro-structure of endothelial cells. Am J Physiol Cell Physiol. 2000; 278(5):C873–C878.

    Google Scholar 

  103. Weidner N, Carroll PR, Flax J, Blumenfeld W, Folkman J. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol. 1993; 143(2):401–409.

    Google Scholar 

  104. Brawer MK, Deering RE, Brown M, Preston SD, Bigler SA. Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer. 1994; 73(3):678–687.

    Article  Google Scholar 

  105. Borre M, Offersen BV, Nerstrom B, Overgaard J. Microvessel density predicts survival in prostate cancer patients subjected to watchful waiting. Br J Cancer. 1998; 78(7):940–944.

    Article  Google Scholar 

  106. Nicholson B, Schaefer G, Theodorescu D. Angiogenesis in prostate cancer: biology and therapeutic opportunities. Cancer Metastasis Rev. 2001; 20(3–4):297–319.

    Article  Google Scholar 

  107. Kerbel RS. Tumor angiogenesis. N Engl J Med. 2008; 358(19):2039–2049.

    Article  Google Scholar 

  108. Makale M. Intravital imaging and cell invasion. Methods Enzymol. 2007; 426:375–401.

    Article  Google Scholar 

  109. Makale M. Noninvasive imaging of blood vessels, chapter 8. Methods Enzymol. 2008; 444:175–199.

    Article  Google Scholar 

  110. Bingle L, Lewis CE, Corke KP, Reed MW, Brown NJ. Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br J Cancer. 2006; 94(1):101–107.

    Article  Google Scholar 

  111. Read TA, Farhadi M, Bjerkvig R, Olsen BR, Rokstad AM, Huszthy PC, Vajkoczy P. Intravital microscopy reveals novel antivascular and antitumor effects of endostatin delivered locally by alginate-encapsulated cells. Cancer Res. 2001; 61(18):6830–6837.

    Google Scholar 

  112. Dellian M, Witwer BP, Salehi HA, Yuan F, Jain RK. Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am J Pathol. 1996; 149(1):59–71.

    Google Scholar 

  113. Frost GI, Lustgarten J, Dudouet B, Nyberg L, Hartley-Asp B, Borgstrom P. Novel syngeneic pseudo-orthotopic prostate cancer model: vascular, mitotic and apoptotic responses to castration. Microvasc Res. 2005; 69(1–2):1–9.

    Article  Google Scholar 

  114. Cunha GR, Hayward SW, Dahiya R, Foster BA. Smooth muscle-epithelial interactions in normal and neoplastic prostatic development. Acta Anat (Basel) . 1996; 155(1):63–72.

    Article  Google Scholar 

  115. Condon MS, Bosland MC. The role of stromal cells in prostate cancer development and progression. In Vivo. 1999; 13(1): 61–65.

    Google Scholar 

  116. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999; 59(19):5002–5011.

    Google Scholar 

  117. Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986; 315(26):1650–1659.

    Article  Google Scholar 

  118. Schmid-Schonbein GW, Skalak R, Simon SI, Engler RL. The interaction between leukocytes and endothelium in vivo. Ann N Y Acad Sci. 1987; 516:348–361.

    Article  Google Scholar 

  119. Suematsu M, Suzuki H, Delano FA, Schmid-Schonbein GW. The inflammatory aspect of the microcirculation in hypertension: oxidative stress, leukocytes/endothelial interaction, apoptosis. Microcirculation. 2002; 9(4):259–276.

    Google Scholar 

  120. Ohashi KL, Tung DK, Wilson J, Zweifach BW, Schmid-Schonbein GW. Transvascular and interstitial migration of neutrophils in rat mesentery. Microcirculation. 1996; 3(2): 199–210.

    Article  Google Scholar 

  121. Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003; 161(6):1163–1177.

    Article  Google Scholar 

  122. Houck KA, Leung DW, Rowland AM, Winer J, Ferrara N. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem. 1992; 267(36):26031–26037.

    Google Scholar 

  123. Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008; 26(17): 2839–2845.

    Article  Google Scholar 

  124. Hill RP. Identifying cancer stem cells in solid tumors: case not proven. Cancer Res. 2006; 66(4):1891–1895, discussion 1890.

    Article  Google Scholar 

  125. Conti L, Pollard SM, Gorba T, Reitano E, Toselli M, Biella G, Sun Y, Sanzone S, Ying QL, Cattaneo E, Smith A. Niche-independent symmetrical self-renewal of a mammalian tissue stem cell. PLoS Biol. 2005; 3(9):e 283.

    Article  Google Scholar 

  126. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007; 104(24):10158–10163.

    Article  Google Scholar 

  127. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003; 63(18):5821–5828.

    Google Scholar 

  128. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature. 2004; 432(7015):396–401.

    Article  Google Scholar 

  129. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004; 64(19):7011–7021.

    Article  Google Scholar 

  130. Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, Weissman IL, Clarke MF, Ailles LE. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA. 2007; 104(3):973–978.

    Article  Google Scholar 

  131. Al-Hajj M. Cancer stem cells and oncology therapeutics. Curr Opin Oncol. 2007; 19(1):61–64.

    Google Scholar 

  132. Gu Y, Li H, Miki J, Kim KH, Furusato B, Sesterhenn IA, Chu WS, McLeod DG, Srivastava S, Ewing CM, Isaacs WB, Rhim JS. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines. Exp Cell Res. 2006; 312(6):831–843.

    Article  Google Scholar 

  133. Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol. 2005; 37(5):961–976.

    Article  Google Scholar 

  134. Dimri GP, Martinez JL, Jacobs JJ, Keblusek P, Itahana K, Van Lohuizen M, Campisi J, Wazer DE, Band V. The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res. 2002; 62(16):4736–4745.

    Google Scholar 

  135. Park IK, Morrison SJ, Clarke MF. Bmi1, stem cells, and senescence regulation. J Clin Invest. 2004; 113(2):175–179.

    Google Scholar 

  136. Kim SJ, Uehara H, Karashima T, McCarty M, Shih N, Fidler IJ. Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice. Neoplasia. 2001; 3(1):33–42.

    Article  MATH  Google Scholar 

  137. Murphy C, McGurk M, Pettigrew J, Santinelli A, Mazzucchelli R, Johnston PG, Montironi R, Waugh DJ. Nonapical and cytoplasmic expression of interleukin-8, CXCR1, and CXCR2 correlates with cell proliferation and microvessel density in prostate cancer. Clin Cancer Res. 2005; 11(11):4117–4127.

    Article  Google Scholar 

  138. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005; 65(23):10946–10951.

    Article  Google Scholar 

  139. Gu G, Yuan J, Wills M, Kasper S. Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res. 2007; 67(10):4807–4815.

    Article  Google Scholar 

  140. Kenny PA, Lee GY, Bissell MJ. Targeting the tumor microenvironment. Front Biosci. 2007; 12:3468–3474.

    Article  Google Scholar 

  141. Ross JS. The androgen receptor in prostate cancer: therapy target in search of an integrated diagnostic test. Adv Anat Pathol. 2007; 14(5):353–357.

    Article  Google Scholar 

  142. Ross JS, Foster CS. Molecular oncology of prostate cancer. Sudbury: Jones and Bartlett Publishers; 2007.

    Google Scholar 

  143. Silvestre JS, Levy BI, Tedgui A. Mechanisms of angiogenesis and remodelling of the microvasculature. Cardiovasc Res. 2008; 78(2):201–202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hueck, I.S., Haas, M., Finones, R., Frimodig, J., Gough, D.A. (2011). The Potential of Selectively Cultured Adult Stem Cells Re-implanted in Tissues. In: Artmann, G., Minger, S., Hescheler, J. (eds) Stem Cell Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11865-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11865-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11864-7

  • Online ISBN: 978-3-642-11865-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics