Skip to main content

Bio-synthetic Encapsulation Systems for Organ Engineering: Focus on Diabetes

  • Chapter
  • First Online:
Book cover Stem Cell Engineering

Abstract

The development of a safe and effective bio-synthetic encapsulation system will potentially improve the treatment of diseases known to benefit from cell implantation therapies. This is of particular importance in the progression towards a permanent treatment for type 1 diabetes. Cell-based therapies for insulin-dependent diabetics ultimately aim to eliminate the need for exogenous insulin through the implantation of donor islet cells or, alternately, stem cells differentiated into glucose-sensitive islet-like cells. Encapsulation devices are required to protect implanted cells from destructive host immune factors. A successful design will be bio-synthetic, having well-defined permeability and providing appropriate biomolecules for physiological functionality and survival of the encapsulated cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thanos CG, Emerich DF. On the use of hydrogels in cell encapsulation and tissue engineering systems. Recent Pat Drug Deliv Formul. 2008; 2(1):19–24.

    Article  Google Scholar 

  2. Rother KI. Diabetes treatment – bridging the divide. N Engl J Med. 2007; 356(15):1499–1501.

    Article  Google Scholar 

  3. Kabelitz D, et al. Toward cell-based therapy of type I diabetes. Trends Immunol. 2008; 29(2):68–74.

    Article  Google Scholar 

  4. Alberti KGMM, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Geneva: Department of Noncommunicable Disease Surveillance, World Health Organisation; 1999.

    Google Scholar 

  5. Anonymous. National diabetes statistics, 2007. Bethesda: U.S. Department of Health and Human Services. National Institute of Health; 2007, p. 23.

    Google Scholar 

  6. American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008; 31(3):596–615.

    Article  Google Scholar 

  7. Pringle M, Houghton P. National service framework for diabetes: standards. London: Department of Health; 2001, p. 48.

    Google Scholar 

  8. Pavlakis M, Khwaja K. Pancreas and islet cell transplantation in diabetes. Curr Opin Endocrinol Diabetes Obes. 2007; 14(2):146–150.

    Article  Google Scholar 

  9. Pavlakis M, Khwaja K. Transplantation for type 1 diabetes: whole organ pancreas and islet cells. Curr Diabetes Rep. 2007; 6(6):473–478.

    Article  Google Scholar 

  10. Naftanel MA. Pancreatic islet transplantation. PLoS Med. 2004; 1(3):198–201.

    Article  Google Scholar 

  11. Yoon J-W, Jun H-S. Recent advances in insulin gene therapy for type 1 diabetes. Trends Mol Med. 2002; 8(2):62–68.

    Article  Google Scholar 

  12. Laub O, Rutter WJ. Expression of the human insulin gene and cDNA in a heterologous mammalian system. J Biol Chem. 1983; 258:6043–6050.

    Google Scholar 

  13. Iwata H, et al. Preparation of insulin-releasing Chinese Hamster ovary cell transfection of human insulin gene: its implantation into diabetic mice. In: Shalaby SW, et al., ed. Polymers of biological and biomedical significance. Washington: American Chemical Society; 1994.

    Google Scholar 

  14. Falqui L, et al. Production of mature human insulin by retrovirally engineered fibroblasts and primary rat hepatocytes. Exp Clin Endocrinol Diabetes 1996; 104:A37.

    Google Scholar 

  15. Bailey CJ, et al. Prospects for insulin delivery by ex-vivo somatic cell gene therapy. J Mol Med. 1999; 77:244–249.

    Article  Google Scholar 

  16. Kofman AV, et al. Gene- and cell-based therapy of diabetes: between bench and bedside. Tsitologiia 2002; 44(12):1157–1177.

    MathSciNet  Google Scholar 

  17. Henquin J. Pancreatic b-cell mass or b-cell function? That is the question! Diabetes Obes Metab. 2008; 10(suppl 4):1–4.

    Google Scholar 

  18. Shapiro AM, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006; 355(13):1318–1330.

    Article  Google Scholar 

  19. Ricordi C, Strom TB. Clinical islet transplantation: advances and immunological challenges. Nat Rev Immunol. 2004; 4:259–268.

    Article  Google Scholar 

  20. Matsumoto S, et al. Efficacy of human islet isolation from the tail section of the pancreas for the possibility of living donor islet transplantation. Transplantation 2004; 78(6):839–843.

    Article  Google Scholar 

  21. Ricordi C, et al. Detection of intrahepatic human islets following combined liver-islet allotransplantation. Pancreas 1992; 7(4):507–509.

    Article  Google Scholar 

  22. Levy MM, et al. Intrathymic islet transplantation in the canine: I. Histological and functional evidence of autologous intrathymic islet engraftment and survival in pancreatectomized recipients. Transplantation 2002; 73(6):842–852.

    Article  Google Scholar 

  23. Jaeger C, et al. Effect of transplantation site and culture pretreatment on islet xenograft survival (rat to mouse) in experimental diabetes without immunosuppression of the host. Acta Diabetol. 1994; 31(4):193–197.

    Article  Google Scholar 

  24. Jaeger C, et al. Pancreatic islet xenografts at two different transplantation sites (renal subcapsular versus intraportal): comparison of graft survival and morphology. Exp Clin Endocrinol Diabetes 1995; 103(2):123–128.

    Article  Google Scholar 

  25. Desai TA, et al. Nanoporous microsystems for islet cell replacement. Adv Drug Deliv Rev. 2004; 56(11):1661–1673.

    Article  Google Scholar 

  26. Wilson JT, Chaikof EL. Challenges and emerging technologies in the immunoisolation of cells and tissues. Adv Drug Deliv Rev. 2008; 60(2):124–145.

    Article  Google Scholar 

  27. Ricordi C, Edlund H. Toward a renewable source of pancreatic beta-cells. Nat Biotechnol. 2008; 26(4):397–398.

    Article  Google Scholar 

  28. Williams PW. Notes on diabetes treated with extract and grafts of sheep’s pancreas. BMJ 1894; 2:1303–1304.

    Google Scholar 

  29. Kobayashi T, et al. Indefinite islet protection from autoimmune destruction in nonobese diabetic mice by agarose microencapsulation without immunosuppression. Transplantation 2003; 75(5):619–625.

    Article  Google Scholar 

  30. Schneider S, et al. Long-term graft function of adult rat and human islets encapsulated in novel alginate-based microcapsules after transplantation in immunocompetent diabetic mice. Diabetes 2005; 54(3):687–693.

    Article  Google Scholar 

  31. Yang H, et al. Long-term function of fish islet xenografts in mice by alginate encapsulation. Transplantation 1997; 64(1):28–32.

    Article  Google Scholar 

  32. Sun Y, et al. Normalization of diabetes in spontaneously diabetic cynomologus monkeys by xenografts of microencapsulated porcine islets without immunosuppression. J Clin Invest. 1996; 98(6):1417–1422.

    Article  Google Scholar 

  33. Elliott RB, et al. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc. 2005; 37(8): 3505–3508.

    Article  Google Scholar 

  34. Serup P, et al. Science, medicine, and the future: islet and stem cell transplantation for treating diabetes. BMJ 2001; 322(7277):29–32.

    Article  Google Scholar 

  35. Ballinger WF, Lacy PE. Transplantation of intact pancreatic islets in rats. Surgery 1972; 72:175–186.

    Google Scholar 

  36. Ryan EA, et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005; 54(7):2060–2070.

    Article  Google Scholar 

  37. Calafiore R, et al. Microencapsulated pancreatic islet allografts into nonimmunosuppressed patients with type 1 diabetes: first two cases. Diabetes Care 2006; 29(1):137–138.

    Article  MathSciNet  Google Scholar 

  38. Duvivier-Kali VF, et al. Complete protection of islets against allorejection and autoimmunity by a simple barium-alginate membrane. Diabetes 2001; 50(8):1698–1705.

    Article  Google Scholar 

  39. Omer A, et al. Long-term normoglycemia in rats receiving transplants with encapsulated islets. Transplantation 2005; 79(1):52–58.

    Article  Google Scholar 

  40. de Vos P, et al. Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets. Biomaterials 2003; 24(2):305–312.

    Article  MathSciNet  Google Scholar 

  41. Tashiro H, et al. Characterization and transplantation of agarose encapsulated canine islets of Langerhans. Ann Transplant 1997; 2:33–39.

    Google Scholar 

  42. Matsumoto S, et al. Insulin independence after living-donor distal pancreatectomy and islet allotransplantation. Lancet 2005; 365(9471):1642–1644.

    Google Scholar 

  43. Soria B, et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in streptozotocin-induced diabetic mice. Diabetes 2001; 49:157–162.

    Article  Google Scholar 

  44. Kroon E, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008; 26(4): 443–452.

    Article  Google Scholar 

  45. Suen PM, Leung PS. Pancreatic stem cells: a glimmer of hope for diabetes? J Pancreas. 2005; 6(5):422–424.

    Google Scholar 

  46. Ramiya VK, et al. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med. 2000; 6(3):278–282.

    Article  Google Scholar 

  47. Seaberg RM, et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol. 2004; 22:1115–1124.

    Article  Google Scholar 

  48. Hori Y, et al. Enrichment of putative pancreatic progenitor cells from mice by sorting for prominin1 (CD133) and PDGFR{beta}. Stem Cells 2008; 26(11)2912–2920.

    Article  Google Scholar 

  49. Lacy PE, et al. Maintenance of normoglycemia in diabetic mice by subcutaneous xenografts of encapsulated islets. Science 1991; 254(5039):1782–1784.

    Article  Google Scholar 

  50. Maria-Engler SS, et al. Microencapsulation and tissue engineering as an alternative treatment of diabetes. Braz J Med Biol Res. 2001; 34(6):691–697.

    Article  Google Scholar 

  51. Kizilel S, et al. The bioartificial pancreas: progress and challenges. Diabetes Technol Ther. 2005; 7(6):968–985.

    Article  Google Scholar 

  52. Williams DF. The Williams dictionary of biomaterials. Liverpool University Press, 1999, ISBN 0-85323-921-5.

    Google Scholar 

  53. Silva AI, et al. An overview on the development of a bio-artificial pancreas as a treatment of insulin-dependent diabetes mellitus. Med Res Rev. 2006; 26(2):181–222.

    Article  Google Scholar 

  54. Yang KC, et al. Chitosan/gelatin hydrogel as immunoisolative matrix for injectable bioartificial pancreas. Xenotransplantation 2008; 15(6):407–416.

    Article  MATH  Google Scholar 

  55. Lacik I. Polymer chemistry in diabetes treatment by encapsulated islets of Langerhans: review to 2006. Aust J Chem. 2006; 59(8):508–524.

    Article  Google Scholar 

  56. Kulseng B, et al. Transplantation of alginate microcapsules: generation of antibodies against alginates and encapsulated porcine islet-like cell clusters. Transplantation 1999; 67(7): 978–984.

    Article  Google Scholar 

  57. King A, et al. The effect of capsule composition in the reversal of hyperglycemi in diabetic mice transplanted with microencapsulated allogeneic islets. Diabetes Technol Ther. 2003; 5:653–663.

    Article  Google Scholar 

  58. Xu B-Y, et al. Rapid destruction of encapsulated islet xenografts by NOD Mice is CD4-dependent and facilitated by b-cells: innate immunity and autoimmunity do not play significant roles. Transplantation 2005; 80(3):402–409.

    Article  Google Scholar 

  59. Dembczynski R, Jankowski T. Determination of pore diameter and molecular weight cut-off of hydrogel-membrane liquid-core capsules for immunoisolation. J Biomater Sci Polym Ed. 2001; 12(9):1051–1058.

    Article  Google Scholar 

  60. Stewart WW, Swaisgood HE. Characterization of calcium alginate pore diameter by size-exclusion chromatography using protein standards. Enzyme Microb Technol. 1993; 15(11):922–927.

    Article  Google Scholar 

  61. Partap S, et al. Preparation and characterisation of controlled porosity alginate hydrogels made via a simultaneous micelle templating and internal gelation process. J Mater Sci. 2007; 42(10):3502–3507.

    Article  Google Scholar 

  62. Chan AW, et al. Kinetic controlled synthesis of pH-responsive network alginate. Biomacromolecules 2008; 9(9):2536–2545.

    Article  Google Scholar 

  63. Brissová M, et al. Evaluation of microcapsule permeability via inverse size exclusion chromatography. Anal Biochem. 1996; 242(1):104–111.

    Article  Google Scholar 

  64. Bosco D, et al. Importance of cell-matrix interactions in rat islet beta-cell secretion in vitro: role of alpha6beta1 integrin. Diabetes 2000; 49(2):233–243.

    Article  Google Scholar 

  65. Kaido T, et al. Impact of defined matrix interactions on insulin production by cultured human {beta}-cells: effect on insulin content, secretion, and gene transcription. Diabetes 2006; 55(10):2723–2729.

    Article  Google Scholar 

  66. Nikolova G, et al. The vascular basement membrane: a niche for insulin gene expression and [beta] cell proliferation. Dev Cell 2006; 10(3):397–405.

    Article  Google Scholar 

  67. Weber LM, et al. The effects of cell-matrix interactions on encapsulated [beta]-cell function within hydrogels functionalized with matrix-derived adhesive peptides. Biomaterials 2007; 28(19):3004–3011.

    Article  Google Scholar 

  68. Beck J, et al. Islet encapsulation: strategies to enhance islet cell functions. Tissue Eng. 2007; 13(3):589–599.

    Article  Google Scholar 

  69. D’Amour KA, et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005; 23(12):1534–1541.

    Article  Google Scholar 

  70. Taylor CJ, et al. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet 2005; 366(9502):2019–2025.

    Article  Google Scholar 

  71. Robertson NJ, et al. Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc Natl Acad Sci USA. 2007; 104(52):20920–20925.

    Article  Google Scholar 

  72. Gershengorn MC, et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 2004; 306(5705):2261–2264.

    Article  Google Scholar 

  73. Takeda Y, et al. Protection of islet allografts transplanted together with Fas ligand expressing testicular allografts. Diabetologia 1998; 41(3):315–321.

    Article  Google Scholar 

  74. Sanlioglu AD, et al. Molecular mechanisms of death ligand-mediated immune modulation: a gene therapy model to prolong islet survival in type 1 diabetes. J Cell Biochem. 2008; 104(3):710–720.

    Article  Google Scholar 

  75. Jin Y, et al. Simultaneous stimulation of Fas-mediated apoptosis and blockade of costimulation prevent autoimmune diabetes in mice induced by multiple low-dose streptozotocin. Gene Ther. 2004; 11(12):982–991.

    Article  Google Scholar 

  76. Petrovsky N, et al. The role of Fas ligand in beta cell destruction in autoimmune diabetes of NOD mice. Ann NY Acad Sci. 2002; 958:204–208.

    Article  Google Scholar 

  77. Meyer T, et al. Extracellular matrix proteins in the porcine pancreas: a structural analysis for directed pancreatic islet isolation. Transplant Proc. 1998; 30(2):354–354.

    Article  Google Scholar 

  78. Parnaud G, et al. Blockade of β1 integrin-laminin-5 interaction affects spreading and insulin secretion of rat β-cells attached on extracellular matrix. Diabetes 2006; 55(5):1413–1420.

    Article  Google Scholar 

  79. Knox S, et al. Not all perlecans are created equal: interactions with fibroblast growth factor (FGF) 2 and FGF receptors. J Biol Chem. 2002; 277(17):14657–14665.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Green, R.A., Martens, P.J., Nordon, R., Poole-Warren, L.A. (2011). Bio-synthetic Encapsulation Systems for Organ Engineering: Focus on Diabetes. In: Artmann, G., Minger, S., Hescheler, J. (eds) Stem Cell Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11865-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11865-4_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11864-7

  • Online ISBN: 978-3-642-11865-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics