Skip to main content

Endothelial Progenitor Cells for Vascular Repair

  • Chapter
  • First Online:
Book cover Stem Cell Engineering

Abstract

Endothelial progenitor cells (EPCs), present in the blood and bone marrow, represent a potential source of endothelial cells for repair of injured blood vessels, neovascularization, and tissue engineering. EPCs are present at low levels in peripheral blood, although their numbers increase in response to cytokines, VEGF, and statins. There are at least two types of EPCs characterized following in vitro culture: colony-forming unit ECs (CFU-ECs) and endothelial colony-forming cells (ECFCs). CFU-ECs appear early in culture, have limited ability to proliferate, and share markers for endothelial cells and monocytes. In contrast, ECFCs appear later in culture, grow rapidly, and to large numbers express only endothelial cell markers. This chapter examines the properties of these EPCs, in vitro and in vivo studies using these two cell types, and the potential of these EPCs for therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O’Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y, For the American Heart Association Statistics, C, and Stroke Statistics, S.. Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009; 119:e21–e181.

    Article  Google Scholar 

  2. Karra R, Vemullapalli S, Dong C, Herderick EE, Song X, Slosek K, Nevins JR, West M, Goldschmidt-Clermont PJ, Seo D. Molecular evidence for arterial repair in atherosclerosis. Proc Natl Acad Sci USA. 2005; 102:16789–16794.

    Article  Google Scholar 

  3. Werner N, Priller J, Laufs U, Endres M, Bohm M, Dirnagl U, Nickenig G. Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol. 2002; 22:1567–1572.

    Article  Google Scholar 

  4. Werner N, Junk S, Laufs U, Link A, Walenta K, Bohm M, Nickenig G. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res. 2003; 93:e17–e24.

    Article  Google Scholar 

  5. Tan H, Jiang X, Yang F, Li Z, Liao D, Trial J, Magera MJ, Durante W, Yang X, Wang H. Hyperhomocysteinemia inhibits post-injury reendothelialization in mice. Cardiovasc Res. 2006; 69:253–262.

    Article  Google Scholar 

  6. Manchio JV, Gu J, Romar L, Brown J, Gammie J, Pierson RN III, Griffith B, Poston RS. Disruption of graft endothelium correlates with early failure after off-pump coronary artery bypass surgery. Ann Thorac Surg. 2005; 79:1991–1998.

    Article  Google Scholar 

  7. Kudo FA, Muto A, Maloney SP, Pimiento JM, Bergaya S, Fitzgerald TN, Westvik TS, Frattini JC, Breuer CK, Cha CH, Nishibe T, Tellides G, Sessa WC, Dardik A. Venous identity is lost but arterial identity is not gained during vein graft adaptation. Arterioscler Thromb Vasc Biol. 2007; 27:1562–1571.

    Article  Google Scholar 

  8. Momin A, Melikian N, Wheatcroft SB, Grieve D, John LC, El Gamel A, Marrinan MT, Desai JB, Driver C, Sherwood R, Shah AM, Kearney MT. The association between saphenous vein endothelial function, systemic inflammation, and statin therapy in patients undergoing coronary artery bypass surgery. J Thorac Cardiovasc Surg. 2007; 134:335–341.

    Article  Google Scholar 

  9. Torsney E, Mayr U, Zou Y, Thompson WD, Hu Y, Xu Q. Thrombosis and neointima formation in vein grafts are inhibited by locally applied aspirin through endothelial protection. Circ Res. 2004; 94:1466–1473.

    Article  Google Scholar 

  10. Zilla P, Deutsch M, Meinhart J. Endothelial cell transplantation. Semin Vasc Surg. 1999; 12:52–63.

    Google Scholar 

  11. Nugent HM, Sjin RT, White D, Milton LG, Manson RJ, Lawson JH, Edelman ER. Adventitial endothelial implants reduce matrix metalloproteinase-2 expression and increase luminal diameter in porcine arteriovenous grafts. J Vasc Surg. 2007; 46:548–556.

    Article  Google Scholar 

  12. Walpoth BH, Zammaretti P, Cikirikcioglu M, Khabiri E, Djebaili MK, Pache JC, Tille JC, Aggoun Y, Morel D, Kalangos A, Hubbell JA, Zisch AH. Enhanced intimal thickening of expanded polytetrafluoroethylene grafts coated with fibrin or fibrin-releasing vascular endothelial growth factor in the pig carotid artery interposition model. J Thorac Cardiovasc Surg. 2007; 133:1163–1170.

    Article  Google Scholar 

  13. Rotmans JI, Heyligers JM, Verhagen HJ, Velema E, Nagtegaal MM, de Kleijn DP, de Groot FG, Stroes ES, Pasterkamp G. In vivo cell seeding with anti-CD34 antibodies successfully accelerates endothelialization but stimulates intimal hyperplasia in porcine arteriovenous expanded polytetrafluoroethylene grafts. Circulation 2005; 112:12–18.

    Article  Google Scholar 

  14. Ingram DA, Mead LE, Tanaka H, Meade V, Fenoglio A, Mortell K, Pollok K, Ferkowicz MJ, Gilley D, Yoder MC. Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 2004; 104:2752–2760.

    Article  Google Scholar 

  15. Brown M, Wallace CS, Truskey GA. Vascular and capillary endothelium. In: Akay M, ed. Wiley encyclopedia of biomedical engineering. New York: Wiley; 2006.

    Google Scholar 

  16. Iivanainen E, Kahari V-M, Heino J, Elenius K. Endothelial cell-matrix interactions. Microsc Res Tech. 2003; 60:13–22.

    Article  Google Scholar 

  17. Vainionpaa N, Kikkawa Y, Lounatmaa K, Miner JH, Rousselle P, Virtanen I. Laminin-10 and Lutheran blood group glycoproteins in adhesion of human endothelial cells. Am J Physiol. 2006; 290:C764–C775.

    Article  Google Scholar 

  18. Orr AW, Sanders JM, Bevard M, Coleman E, Sarembock IJ, Schwartz MA. The subendothelial extracellular matrix modulates NF-{kappa}B activation by flow: a potential role in atherosclerosis. J Cell Biol. 2005; 169:191–202.

    Article  Google Scholar 

  19. Jaffe EA. Cell biology of endothelial cells. Hum Pathol. 1987; 18:234–239.

    Article  Google Scholar 

  20. Iivanainen E, Kahari VM, Heino J, Elenius K. Endothelial cell-matrix interactions. Microsc Res Tech. 2003; 60:13–22.

    Article  Google Scholar 

  21. Shirota T, Yasui H, Matsuda T. Intralumenal tissue-engineered therapeutic stent using endothelial progenitor cell-inoculated hybrid tissue and in vitro performance. Tissue Eng. 2003; 9:473–485.

    Article  Google Scholar 

  22. Hutter R, Carrick FE, Valdiviezo C, Wolinsky C, Rudge JS, Wiegand SJ, Fuster V, Badimon JJ, Sauter BV. Vascular endothelial growth factor regulates reendothelialization and neointima formation in a mouse model of arterial injury. Circulation 2004; 110:2430–2435.

    Article  Google Scholar 

  23. Consigny PM, Vitali NJ. Resistance of freshly adherent endothelial cells to detachment by shear stress is matrix and time dependent. J Vasc Interv Radiol. 1998; 9:479–485.

    Article  Google Scholar 

  24. Thompson MM, Budd JS, Eady SL, Underwood MJ, James RF, Bell PR. The effect of transluminal endothelial seeding on myointimal hyperplasia following angioplasty. Eur J Vasc Surg. 1994; 8:423–434.

    Article  Google Scholar 

  25. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91:3527–3561.

    Google Scholar 

  26. Aird W. Phenotypic heterogeneity of the endothelium. Circ Res. 2007; 100:158–173.

    Article  Google Scholar 

  27. Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Pritchard WF, Powell S, Chang GY, Stoeckert CJ, Davies PF. Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci USA. 2004; 101:2482–2487.

    Article  Google Scholar 

  28. Pusztaszeri MP, Seelentag W, Bosman FT. Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem. 2006; 54:385–395.

    Article  Google Scholar 

  29. Solovey AN, Gui L, Chang L, Enenstein J, Browne PV, Hebbel RP. Identification and functional assessment of endothelial P1H12. J Lab Clin Med. 2001; 138:322–331.

    Article  Google Scholar 

  30. Tzima E, Irani-Tehrani M, Kiosses W, Dejana E, Schultz D, Engelhardt B, Cao G, DeLisser H, Schwartz M. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005; 437:426–431.

    Article  Google Scholar 

  31. Parmar K, Larman H, Dai G, Zhang Y, Wang E, Moorthy S, Kratz J, Lin Z, Jain M, Gimbrone M, Garcia-Cardena G. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). J Clin Invest. 2006; 116:49–58.

    Article  Google Scholar 

  32. Dekker R, van Soest S, Fontijn R, Salamanca S, de Groot P, VanBavel E, Pannekoek H, Horrevoets A. Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 2002; 100:1689–1698.

    Article  Google Scholar 

  33. Tchaikovski V, Fellbrich G, Waltenberger J. The molecular basis of VEGFR-1 signal transduction pathways in primary human monocytes. Arterioscler Thromb Vasc Biol. 2008; 28:322–328.

    Article  Google Scholar 

  34. Jarrell BE, Williams SK, Stokes G, Hubbard FA, Carabasi RA, Koolpe E, Greener D, Pratt K, Moritz MJ, Radomski J, et al. Use of freshly isolated capillary endothelial cells for the immediate establishment of a monolayer on a vascular graft at surgery. Surgery 1986; 100:392–399.

    Google Scholar 

  35. Arts CH, Hedeman Joosten PP, Blankensteijn JD, Staal FJ, Ng PY, Heijnen-Snyder GJ, Sixma JJ, Verhagen HJ, de Groot PG, Eikelboom BC. Contaminants from the transplant contribute to intimal hyperplasia associated with microvascular endothelial cell seeding. Eur J Vasc Endovasc Surg. 2002; 23:29–38.

    Article  Google Scholar 

  36. Arts CH, Blankensteijn JD, Heijnen-Snyder GJ, Verhagen HJ, Hedeman Joosten PP, Sixma JJ, Eikelboom BC, de Groot PG. Reduction of non-endothelial cell contamination of microvascular endothelial cell seeded grafts decreases thrombogenicity and intimal hyperplasia. Eur J Vasc Endovasc Surg. 2002; 23:404–412.

    Article  Google Scholar 

  37. Herring M, Gardner A, Glover J. A single-staged technique for seeding vascular grafts with autogenous endothelium. Surgery 1978; 84:498–504.

    Google Scholar 

  38. Herring M, Smith J, Dalsing M, Glover J, Compton R, Etchberger K, Zollinger T. Endothelial seeding of polytetrafluoroethylene femoral popliteal bypasses: the failure of low-density seeding to improve patency. J Vasc Surg. 1994; 20:650–655.

    Article  Google Scholar 

  39. Bhat VD, Klitzman B, Koger K, Truskey GA, Reichert WM. Improving endothelial cell adhesion to vascular graft surfaces: clinical need and strategies. J Biomater Sci Polym Ed. 1998; 9:1117–1135.

    Article  Google Scholar 

  40. Alobaid N, Salacinski HJ, Sales KM, Hamilton G, Seifalian AM. Single stage cell seeding of small diameter prosthetic cardiovascular grafts. Clin Hemorheol Microcirc. 2005; 33: 209–226.

    Google Scholar 

  41. Meinhart JG, Deutsch M, Fischlein T, Howanietz N, Froschl A, Zilla P. Clinical autologous in vitro endothelialization of 153 infrainguinal ePTFE grafts. Ann Thorac Surg. 2001; 71:S327–S331.

    Article  Google Scholar 

  42. Truskey GA, Yuan F, Katz DF. Transport phenomenon in biological systems. Upper Saddle River: Pearson/Prentice Hall; 2004.

    Google Scholar 

  43. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275:964–967.

    Article  Google Scholar 

  44. Hill JM, Zalos G, Halcox JPJ, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003; 348:593–600.

    Article  Google Scholar 

  45. Prater DN, Case J, Ingram DA, Yoder MC. Working hypothesis to redefine endothelial progenitor cells. Leukemia 2007; 21:1141–1149.

    Article  Google Scholar 

  46. Bompais H, Chagraoui J, Canron X, Crisan M, Liu XH, Anjo A, Tolla-Le Port C, Leboeuf M, Charbord P, Bikfalvi A, Uzan G. Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 2004; 103:2577–2584.

    Article  Google Scholar 

  47. Urbich C, Dimmeler S. Endothelial progenitor cells functional characterization. Trends Cardiovasc Med. 2004; 14:318–322.

    Article  Google Scholar 

  48. Ishikawa M, Asahara T. Endothelial progenitor cell culture for vascular regeneration. Stem Cells Dev. 2004; 13:344–349.

    Article  Google Scholar 

  49. Rossig L, Urbich C, Dimmeler S. Endothelial progenitor cells at work: not mature yet, but already stress-resistant. Arterioscler Thromb Vasc Biol. 2004; 24:1977–1979.

    Article  Google Scholar 

  50. Zhang L, Yang R, Han ZC. Transplantation of umbilical cord blood-derived endothelial progenitor cells: a promising method of therapeutic revascularisation. Eur J Haematol. 2006; 76:1–8.

    Article  Google Scholar 

  51. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 2007; 109:1801–1809.

    Article  Google Scholar 

  52. Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, Gimbrone MA Jr., Balasubramanian V, Garcia-Cardena G, Jain MK. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res. 2005; 96:e48–e57.

    Article  Google Scholar 

  53. Ingram DA, Caplice NM, Yoder MC. Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 2005; 106:1525–1531.

    Article  Google Scholar 

  54. Dingli D, Traulsen A, Pacheco JM. Dynamics of haemopoiesis across mammals. Proc R Soc B Biol Sci. 2008; 275:2389–2392.

    Article  Google Scholar 

  55. Luttun A, Carmeliet G, Carmeliet P. Vascular progenitors: from biology to treatment. Trends Cardiovasc Med. 2002; 12:88–96.

    Article  Google Scholar 

  56. Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM, Dimmeler S. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation 2001; 103:2885–2890.

    Article  Google Scholar 

  57. Zammaretti P, Zisch AH. Adult ‘endothelial progenitor cells’. Renewing vasculature. Int J Biochem Cell Biol. 2005; 37:493–503.

    Article  Google Scholar 

  58. Dimmeler S, Zeiher AM. Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J Mol Med. 2004; 82:671–677.

    Article  Google Scholar 

  59. Ikenaga S, Hamano K, Nishida M, Kobayashi T, Li TS, Kobayashi S, Matsuzaki M, Zempo N, Esato K. Autologous bone marrow implantation induced angiogenesis and improved deteriorated exercise capacity in a rat ischemic hindlimb model. J Surg Res. 2001; 96:277–283.

    Article  Google Scholar 

  60. Aicher A, Heeschen C, Mildner-Rihm C, Urbich C, Ihling C, Technau-Ihling K, Zeiher AM, Dimmeler S. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med. 2003; 9:1370–1376.

    Article  Google Scholar 

  61. Schmidt-Lucke C, Rossig L, Fichtlscherer S, Vasa M, Britten M, Kamper U, Dimmeler S, Zeiher AM. Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation 2005; 111:2981–2987.

    Article  Google Scholar 

  62. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G. Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med. 2005; 353:999–1007.

    Article  Google Scholar 

  63. Wassmann S, Werner N, Czech T, Nickenig G. Improvement of endothelial function by systemic transfusion of vascular progenitor cells. Circ Res. 2006; 99:e74–e83.

    Article  Google Scholar 

  64. Vemulapalli S, Metzler SD, Akabani G, Petry NA, Niehaus NJ, Liu X, Patil NH, Greer KL, Jaszczak RJ, Coleman RE, Dong C, Goldschmidt-Clermont PJ, Chin BB. Cell therapy in murine atherosclerosis: in vivo imaging with high-resolution helical SPECT. Radiology 2007; 242:198–207.

    Article  Google Scholar 

  65. Dzau VJ, Gnecchi M, Pachori AS, Morello F, Melo LG. Therapeutic potential of endothelial progenitor cells in cardiovascular diseases. Hypertension 2005; 46:7–18.

    Article  Google Scholar 

  66. Woywodt A, Blann AD, Kirsch T, Erdbruegger U, Banzet N, Haubitz M, Dignat-George F. Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J Thromb Haemost. 2006; 4:671–677.

    Article  Google Scholar 

  67. Dignat-George F, Sampol J. Circulating endothelial cells in vascular disorders: new insights into an old concept. Eur J Haematol. 2000; 65:215–220.

    Article  Google Scholar 

  68. Matsuo Y, Imanishi T, Hayashi Y, Tomobuchi Y, Kubo T, Hano T, Akasaka T. The effect of senescence of endothelial progenitor cells on in-stent restenosis in patients undergoing coronary stenting. Intern Med. 2006; 45:581–587.

    Article  Google Scholar 

  69. George J, Herz I, Goldstein E, Abashidze S, Deutch V, Finkelstein A, Michowitz Y, Miller H, Keren G. Number and adhesive properties of circulating endothelial progenitor cells in patients with in-stent restenosis. Arterioscler Thromb Vasc Biol. 2003; 23:e57–e60.

    Article  Google Scholar 

  70. Hinds MT, Ma M, Tran N, Ensley AE, Kladakis SM, Vartanian KB, Markway BD, Nerem RM, Hanson SR. Potential of baboon endothelial progenitor cells for tissue engineered vascular grafts. J Biomed Mater Res A 2008; 86:804–812.

    Google Scholar 

  71. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schafer B, Hossfeld DK, Fiedler W. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000; 95:3106–3112.

    Google Scholar 

  72. Khan SS, Solomon MA, McCoy JP Jr.. Detection of circulating endothelial cells and endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom. 2005; 64:1–8.

    Google Scholar 

  73. de Boer HCet al. Fibrin and activated platelets cooperatively guide stem cells to a vascular injury and promote differentiation towards an endothelial cell phenotype. Arterioscler Thromb Vasc Biol. 2006; 26:1653–1659.

    Article  Google Scholar 

  74. Yamamoto K, Takahashi T, Asahara T, Ohura N, Sokabe T, Kamiya A, Ando J. Proliferation, differentiation, and tube formation by endothelial progenitor cells in response to shear stress. J Appl Physiol. 2003; 95:2081–2088.

    Google Scholar 

  75. Tao J, Yang Z, Wang J-M, Tu C, Pan S-R. Effects of fluid shear stress on eNOS mRNA expression and NO production in human endothelial progenitor cells. Cardiology 2006; 106:82–88.

    Article  Google Scholar 

  76. Obi S, Yamamoto K, Shimizu N, Kumagaya S, Masumura T, Sokabe T, Asahara T, Ando J. Fluid shear stress induces arterial differentiation of endothelial progenitor cells. J Appl Physiol. 2009; 106:203–211.

    Article  Google Scholar 

  77. Desai A, Glaser A, Liu D, Raghavachari N, Blum A, Zalos G, Lippincott M, McCoy JP, Munson PJ, Solomon MA, Danner RL, Cannon RO III. Microarray-based characterization of a colony assay used to investigate endothelial progenitor cells and relevance to endothelial function in humans. Arterioscler Thromb Vasc Biol. 2009; 29:121–127.

    Article  Google Scholar 

  78. Rohde E, Bartmann C, Schallmoser K, Reinisch A, Lanzer G, Linkesch W, Guelly C, Strunk D. Immune cells mimic the morphology of endothelial progenitor colonies in vitro. Stem Cells 2007; 25:1746–1752.

    Article  Google Scholar 

  79. Elsheikh I, Uzunel M, He Z, Holgersson J, Nowak G, Sumitran-Holgersson S. Only a specific subset of human peripheral-blood monocytes has endothelial-like functional capacity. Blood 2005; 106:2347–2355.

    Article  Google Scholar 

  80. Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, Gillebert TC, Plum J, Vandekerckhove B. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arterioscler Thromb Vasc Biol. 2007; 27:1572–1579.

    Article  Google Scholar 

  81. Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, Ohura N, Matsushita A, Kamiya A, Ando J. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol. 2005; 288:H1915–H1924.

    Article  Google Scholar 

  82. Wang H, Riha GM, Yan S, Li M, Chai H, Yang H, Yao Q, Chen C. Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arterioscler Thromb Vasc Biol. 2005; 25:1817–1823.

    Article  Google Scholar 

  83. Guo D, Chien S, Shyy JYJ. Regulation of endothelial cell cycle by laminar versus oscillatory flow: distinct modes of interactions of amp-activated protein kinase and akt pathways. Circ Res. 2007; 100:564–571.

    Article  Google Scholar 

  84. Zeng L, Xiao Q, Margariti A, Zhang Z, Zampetaki A, Patel S, Capogrossi MC, Hu Y, Xu Q. HDAC3 is crucial in shear- and VEGF-induced stem cell differentiation toward endothelial cells. J Cell Biol. 2006; 174:1059–1069.

    Article  Google Scholar 

  85. Metallo CM, Vodyanik MA, de Pablo JJ, Shukvin II, Placek SP. The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnol Bioeng. 2008; 100:830–837.

    Article  Google Scholar 

  86. Stephan S, Ball SG, Williamson M, Bax DV, Lomas A, Shuttleworth CA, Kielty CM. Cell-matrix biology in vascular tissue engineering. J Anat. 2006; 209:495–502.

    Article  Google Scholar 

  87. Hashi CK, Zhu Y, Yang GY, Young WL, Hsiao BS, Wang K, Chu B, Li S. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci USA. 2007; 104:11915–11920.

    Article  Google Scholar 

  88. Gong Z, Niklason LE. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J. 2008; 22:1635–1648.

    Article  Google Scholar 

  89. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infracted heart, improving function and survival. Proc Natl Acad Sci USA. 2001; 98:10344–10349.

    Article  Google Scholar 

  90. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001; 7:430–436.

    Article  Google Scholar 

  91. Rafii DC, Psaila B, Butler J, Jin DK, Lyden D. Regulation of vasculogenesis by platelet-mediated recruitment of bone marrow-derived cells. Arterioscler Thromb Vasc Biol. 2008; 28:217–222.

    Article  Google Scholar 

  92. Szmitko PE, Wang CH, Weisel RD, de Almeida JR, Anderson TJ, Verma S. New markers of inflammation and endothelial cell activation: Part I. Circulation 2003; 108:1917–1923.

    Article  Google Scholar 

  93. Chang KC, Tees DF, Hammer DA. The state diagram for cell adhesion under flow: leukocyte rolling and firm adhesion. Proc Natl Acad Sci USA. 2000; 97:11262–11267.

    Article  Google Scholar 

  94. Chen S, Springer TA. An automatic braking system that stabilizes leukocyte rolling by an increase in selectin bond number with shear. J Cell Biol. 1999; 144:185–200.

    Article  Google Scholar 

  95. Rinker KD, Prabhakar V, Truskey GA. Effect of contact time and force on monocyte adhesion to vascular endothelium. Biophys J. 2001; 80:1722–1732.

    Article  Google Scholar 

  96. Khismatullin DB, Truskey GA. A 3D numerical study of the effect of channel height on leukocyte deformation and adhesion in parallel-plate flow chambers. Microvasc Res. 2004; 68:188–202.

    Article  Google Scholar 

  97. Buchanan JR, Kleinstreuer C, Hyun S, Truskey GA. Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. J Biomech. 2003; 36:1185–1196.

    Article  Google Scholar 

  98. Malinauskas RA, Herrmann RA, Truskey GA. The distribution of intimal white blood cells in the normal rabbit aorta. Atherosclerosis 1995; 115:147–163.

    Article  Google Scholar 

  99. Dentelli P, Rosso A, Balsamo A, Colmenares Benedetto S, Zeoli A, Pegoraro M, Camussi G, Pegoraro L, Brizzi MF, C-KI T. by interacting with the membrane-bound ligand, recruits endothelial progenitor cells to inflamed endothelium. Blood 2007; 109:4264–4271.

    Article  Google Scholar 

  100. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation 2002; 106:2781–2786.

    Article  Google Scholar 

  101. Huygen S, Giet O, Artisien V, Di Stefano I, Beguin Y, Gothot A. Adhesion of synchronized human hematopoietic progenitor cells to fibronectin and vascular cell adhesion molecule-1 fluctuates reversibly during cell cycle transit in ex vivo culture. Blood 2002; 100:2744–2752.

    Article  Google Scholar 

  102. Wu Y, Ip JE, Huang J, Zhang L, Matsushita K, Liew CC, Pratt RE, Dzau VJ. Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ Res. 2006; 99:315–322.

    Article  Google Scholar 

  103. Huygen S, Giet O, Artisien V, Di Stefano I, Beguin Y, Gothot A. Adhesion of synchronized human hematopoietic progenitor cells to fibronectin and vascular cell adhesion molecule-1 fluctuates reversibly during cell cycle transit in ex vivo culture. Blood 2002; 100:2744–2752.

    Article  Google Scholar 

  104. Brown MA, Wallace CS, Angelos MA, Truskey GA. Characterization of umbilical cord blood derived late outgrowth endothelial progenitor cells exposed to laminar shear stress. Tissue Eng. 2009; 35:3575–3587.

    Google Scholar 

  105. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362:801–809.

    Article  Google Scholar 

  106. Seo D, Wang T, Dressman H, Herderick EE, Iversen ES, Dong C, Vata K, Milano CA, Rigat F, Pittman J, Nevins JR, West M, Goldschmidt-Clermont PJ. Gene expression phenotypes of atherosclerosis. Arterioscler Thromb Vasc Biol. 2004; 24:1922–1927.

    Article  Google Scholar 

  107. Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, Wang T, Gregg D, Ramaswami P, Pippen AM, Annex BH, Dong C, Taylor DA. Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 2003; 108:457–463.

    Article  Google Scholar 

  108. George J, Afek A, Abashidze A, Shmilovich H, Deutsch V, Kopolovich J, Miller H, Keren G. Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol. 2005; 25:2636–2641.

    Article  Google Scholar 

  109. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA. 2000; 97:3422–3427.

    Article  Google Scholar 

  110. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA. 2000; 97:3422–3427.

    Article  Google Scholar 

  111. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008; 103:1204–1219.

    Article  Google Scholar 

  112. Gulati R, Jevremovic D, Peterson TE, Witt TA, Kleppe LS, Mueske CS, Lerman A, Vile RG, Simari RD. Autologous culture-modified mononuclear cells confer vascular protection after arterial injury. Circulation 2003; 108:1520–1526.

    Article  Google Scholar 

  113. Griese DP, Ehsan A, Melo LG, Kong D, Zhang L, Mann MJ, Pratt RE, Mulligan RC, Dzau VJ. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation 2003; 108:2710–2715.

    Article  Google Scholar 

  114. Kong D, Melo LG, Mangi AA, Zhang L, Lopez-Ilasaca M, Perrella MA, Liew CC, Pratt RE, Dzau VJ. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation 2004; 109:1769–1775.

    Article  Google Scholar 

  115. Nowak G, Karrar A, Holmen C, Nava S, Uzunel M, Hultenby K, Sumitran-Holgersson S. Expression of vascular endothelial growth factor receptor-2 or Tie-2 on peripheral blood cells defines functionally competent cell populations capable of reendothelialization. Circulation 2004; 110:3699–3707.

    Article  Google Scholar 

  116. de Mel A, Jell G, Stevens MM, Seifalian AM. Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review. Biomacromolecules 2008; 9:2969–2979.

    Article  Google Scholar 

  117. Aoki J, Serruys PW, van Beusekom H, Ong ATL, McFadden EP, Sianos G, van der Giessen WJ, Regar E, de Feyter PJ, Davis HR, Rowland S, Kutryk MJBK. Endothelial progenitor cell capture by stents coated with antibody against CD34 the HEALING-FIM (Healthy endothelial accelerated lining inhibits neointimal growth-first in man) registry. J Am Coll Cardiol. 2005; 45:1574–1579.

    Article  Google Scholar 

  118. Co M, Tay E, Lee CH, Poh KK, Low A, Lim J, Lim IH, Lim YT, Tan HC. Use of endothelial progenitor cell capture stent (Genous Bio-Engineered R Stent) during primary percutaneous coronary intervention in acute myocardial infarction: intermediate- to long-term clinical follow-up. Am Heart J. 2008; 155:128–132.

    Article  Google Scholar 

  119. Markway BD, Mccarty OJT, Marzec UM, David W, Courtman DW, Stephen R, Hanson SR, Hinds MT. Capture of flowing endothelial cells using surface-immobilized anti-kinase insert domain receptor antibody. Tissue Eng Part C 2008; 14:97–105.

    Article  Google Scholar 

  120. Gurtner GC, Chang E. “Priming” endothelial progenitor cells: a new strategy to improve cell based therapeutics. Arterioscler Thromb Vasc Biol. 2008; 28:1034–1035.

    Article  Google Scholar 

  121. Melero-Martin JM, Khan ZA, Picard A, Wu X, Paruchuri S, Bischoff J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007; 109:4761–4768.

    Article  Google Scholar 

  122. Melero-Martin JM, De Obaldia ME, Kang S-Y, Khan ZA, Yuan L, Oettgen P, Bischoff J. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res. 2008; 103:194–202.

    Article  Google Scholar 

  123. Hirschi KK, Ingram DA, Yoder MC. Assessing identity, phenotype, and fate of endothelial progenitor cells. Arterioscler Thromb Vasc Biol. 2008; 28:1584–1595.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants RO1 HL57446, RO1 HL 88825, and NIH Biotechnology Training Grant (GM8555) fellowship to C.S.C. and an American Heart Association Fellowship to M.A.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Truskey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown, M.A., Cheng, C.S., Truskey, G.A. (2011). Endothelial Progenitor Cells for Vascular Repair. In: Artmann, G., Minger, S., Hescheler, J. (eds) Stem Cell Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11865-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11865-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11864-7

  • Online ISBN: 978-3-642-11865-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics