Bone Tumours: Work Up 2009

Imaging Algorithm in the Diagnosis, Therapy, Control and Follow-Up of Primary Musculoskeletal Tumours and Metastases
  • I. M. Noebauer-Huhmann
  • J. Panotopolous
  • R. I. Kotz
Part of the European Instructional Lectures book series (EICL, volume 10)


Fracture healing is a complex physiological process caused by the interaction of cellular elements that are activated and controlled by an array of cytokines and signalling proteins [11]. This process is both temporal and spatial in nature and usually results in the formation of new bone, which is structurally and mechanically similar to the pre-fracture state [10]. For al lot of reasons this process can fail and result in non-union of bone in 10% of all fractures and in up in 50% of open fractures of the tibia. These patients develop a non-union, which leads to long-lasting inability to work, loss of employment and high social costs. These cost are estimated in a paper of Sprague 2002 to be at approximately $80,000 in case of 18 weeks delay of fracture healing [28]. The overall costs of delayed fracture healing are estimated to be at $14.6 million in United States alone [6].


Positron Emission Tomography Single Photon Emission Compute Tomography Standard Uptake Value Soft Tissue Tumour Fibrous Dysplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Teresa Zettl for the thorough ­administrative help


  1. 1.
    “Der unerwartete Tumor aus interdisziplinärer Sicht” (The unexpected tumour from an interdisciplinary point of view).AMSOS – Austrian Musculoskeletal Oncology Society. Annual Meeting; Vienna, 21–22 November 2008Google Scholar
  2. 2.
    Homepage of Austin Hospital, Australia:
  3. 3.
    Algra PR, Bloem L, Tissing H et al (1991) Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics 11:219–232PubMedGoogle Scholar
  4. 4.
    Antoch G, Bockisch A (2009) Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging 36:113–120CrossRefGoogle Scholar
  5. 5.
    Antoch G, Saoudi N, Kuehl H et al (2004) Accuracy of whole-body dual-modality fluorine-18–2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumour staging in solid tumours: comparison with CT and PET. J Clin Oncol 22:4357–4368CrossRefPubMedGoogle Scholar
  6. 6.
    Antoch G, Vogt FM, Bockisch A et al (2004) Whole-body tumour staging: MRI or FDG-PET/CT? [Article in German]. Radiologe 44:882–888CrossRefPubMedGoogle Scholar
  7. 7.
    Aoki J, Endo K, Watanabe H et al (2003) FDG-PET for evaluating musculoskeletal tumours: a review. J Orthop Sci 8:435–441CrossRefPubMedGoogle Scholar
  8. 8.
    Aoki J, Watanabe H, Shinozaki T et al (2001) FDG-PET of primary benign and malignant bone tumours: standardized uptake value in 52 lesions. Radiology 219:774–777PubMedGoogle Scholar
  9. 9.
    Avrahami E, Tadmor R, Dally O et al (1989) Early MR demonstration of spinal metastases in patients with normal radiographs and CT and radionuclide bone scans. J Comput Assist Tomogr 13:598–602CrossRefPubMedGoogle Scholar
  10. 10.
    Bastiaannet E, Groen H, Jager PL (2004) The value of FDG-PET in the detection, grading and response to therapy of soft tissue and bone sarcomas; a systematic review and meta-analysis. Cancer Treat Rev 30:83–101CrossRefPubMedGoogle Scholar
  11. 11.
    Baur-Melnyk A, Buhmann S, Becker C et al (2008) Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. Am J Roentgenol 190:1097–1104CrossRefGoogle Scholar
  12. 12.
    Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I (2001) Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 31:28–49CrossRefPubMedGoogle Scholar
  13. 13.
    Blodgett TM, Meltzer CC, Townsend DW (2007) PET/CT: form and function. Radiology 242(2):360–385CrossRefPubMedGoogle Scholar
  14. 14.
    Clamp A, Danson S, Nguyen H et al (2004) Assessment of therapeutic response in patients with metastatic bone disease. Lancet Oncol 5:607–616CrossRefPubMedGoogle Scholar
  15. 15.
    de Kerviler E, Cuenod CA, Clement O et al (1998) What is bright on T1 MRI scans? J Radiol 79:117–126PubMedGoogle Scholar
  16. 16.
    De Schepper AM, Vanhoenacker F, Gielen J et al (eds) (2005) Imaging of soft tissue tumours, 3rd edn. Springer, Berlin, GermanyGoogle Scholar
  17. 17.
    Dimitrakopoulou-Strauss A, Strauss LG, Heichel T et al (2002) The role of quantitative 18F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med 43:510–518PubMedGoogle Scholar
  18. 18.
    Edelstyn GA, Gillespie PJ, Grebbell FS (1967) The radiological demonstration of osseous metastases: experimental observations. Clin Radiol 18:158–162CrossRefPubMedGoogle Scholar
  19. 19.
    Eustace S, Tello R, DeCarvaiho V et al (1997) A comparison of whole-body turbo STIR MR imaging and planar 99mTc-methylene diphosphonate scintigraphy in the examination of patients with suspected skeletal metastases. AJR 169:1655–1661PubMedGoogle Scholar
  20. 20.
    Even-Sapir E (2005) Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med 46:1356–1367PubMedGoogle Scholar
  21. 21.
    Even-Sapir E (2007) PET/CT in malignant bone disease. Semin Musculoskelet Radiol 11:312–321CrossRefPubMedGoogle Scholar
  22. 22.
    Fayad LM, Barker PB, Bluemke DA (2007) Molecular characterization of musculoskeletal tumors by Proton MR spectroscopy. Semin Musculoskelet Radiol 11:240–245CrossRefPubMedGoogle Scholar
  23. 23.
    Gates GF (1998) SPECT bone scanning of the spine. Semin Nucl Med 28:78–94CrossRefPubMedGoogle Scholar
  24. 24.
    Gilday DL, Ash JM (1976) Benign bone tumours. Sem Nucl Med 6:33–46CrossRefGoogle Scholar
  25. 25.
    Greenspan A, Jundt G, Remagen W (eds) (2007) Differential diagnosis in orthopaedic oncology, 2nd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  26. 26.
    Herneth AM, Guccione S, Bednarski M (2003) Apparent diffusion coefficient: a quantitative parameter for in vivo tumour characterization. Eur J Radiol 45:208–213CrossRefPubMedGoogle Scholar
  27. 27.
    Israel O, Goldberg A, Nachtigal A et al (2006) FDG-PET and CT patterns of bone metastases and their relationship to previously administered anti-cancer therapy. Eur J Nucl Med Mol Imaging 33:1280–1284CrossRefPubMedGoogle Scholar
  28. 28.
    Ito S, Kato K, Ikeda M et al (2007) Comparison of 18F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. J Nucl Med 48:889–895CrossRefPubMedGoogle Scholar
  29. 29.
    Kajihara M, Sugawara Y, Sakayama K et al (2007) Evaluation of tumour blood flow in musculoskeletal lesions: dynamic contrast-enhanced MR imaging and its possibility when monitoring the response to preoperative chemotherapy – work in progress. Radiat Med 25:94–105CrossRefPubMedGoogle Scholar
  30. 30.
    Kazama T, Swanston N, Podoloff DA et al (2005) Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow. Eur J Nucl Med Mol Imaging 32:1406–1411CrossRefPubMedGoogle Scholar
  31. 31.
    Lassau N, Lamuraglia M, Vanel D et al (2005) Doppler us with perfusion software and contrast medium injection in the early evaluation of isolated limb perfusion of limb ­sarcomas: prospective study of 49 cases. Ann Oncol 16:1054–1060CrossRefPubMedGoogle Scholar
  32. 32.
    Lee T (2007) Predicting failure load of the femur with ­simulated osteolytic defects using noninvasive imaging technique in a simplified load case. Ann Biomed Eng 35:642–650CrossRefPubMedGoogle Scholar
  33. 33.
    Lodwick GS (1966) Solitary malignant tumours of bone: the application of predictor variables in gnosis. Semin Roentgenol 1:293–313CrossRefGoogle Scholar
  34. 34.
    Mankin HJ (2002) Chondrosarcoma of bone In: Mendez LR ed. Orthopedic knowledge update. Am Acad of Orthop Surgeons 187–194Google Scholar
  35. 35.
    McCarville MB (2008) New frontiers in pediatric oncologic imaging. Cancer Imaging 8:87–92CrossRefPubMedGoogle Scholar
  36. 36.
    Menendez LR, Fideler BM, Mirra J (1993) Thallium-201 scanning for the evaluation of osteosarcoma and soft-tissue sarcoma. A study of the evaluation and predictability of the histological response to chemotherapy. J Bone Joint Surg Am 75(4):526–531PubMedGoogle Scholar
  37. 37.
    Metser U, Lerman H, Blank A et al (2004) Malignant involvement of the spine: assessment by 18F-Fluorodeoxyglucose PET/CT. J Nucl Med 45:279–284PubMedGoogle Scholar
  38. 38.
    Parsons TW III, Filzen TW (2004) Evaluation and staging of musculoskeletal neoplasia. Hand Clin 20:137–145CrossRefGoogle Scholar
  39. 39.
    Peterson JJ (2007) F-18 FDG-PET for detection of osseous metastatic disease and staging, restaging, and monitoring response to therapy of musculoskeletal tumours. Semin Musculoskelet Radiol 11(3):246–260CrossRefPubMedGoogle Scholar
  40. 40.
    Salzer-Kuntschik M, Delling G, Beron G, Sigmund R (1983) Morphological grades of regression in osteosarcoma after polychemotherapy – study COSS 80. J Cancer Res Clin Oncol 106 Suppl:21–24CrossRefPubMedGoogle Scholar
  41. 41.
    Savelli G, Maffioli L, Maccauro M et al (2001) Bone­scintigraphy and the added value of SPECT (single photon emission tomography) in detecting skeletal lesions. Q J Nucl Med 45:27–37PubMedGoogle Scholar
  42. 42.
    Schmidt GP, Schoenberg SO, Schmid R et al (2007) Screening for bone metastases: whole-body MRI using a 32-channel system versus dual-modality PET-CT. Eur Radiol 17:939–949CrossRefPubMedGoogle Scholar
  43. 43.
    Shin D-S, Shon O-J, Han D-S (2008) The clinical efficacy of 18F-FDG-PET/CT in benign and malignant musculoskeletal tumours. Ann Nucl Med 22:603–609CrossRefPubMedGoogle Scholar
  44. 44.
    Steinborn MM, Heuck AF, Tiling R et al (1999) Whole-body bone marrow MRI in patients with metastatic disease to the skeletal system. J Comput Assist Tomogr 23:123–129CrossRefPubMedGoogle Scholar
  45. 45.
    Strobel K, Exner UE, Stumpe KDM et al (2008) The additional value of CT images interpretation in the differential diagnosis of benign vs. malignant primary bone lesions with 18F-FDG-PET/CT. Eur J Nucl Med Mol Imaging 35:2000–2008CrossRefPubMedGoogle Scholar
  46. 46.
    Townsend DW, Beyer T, Blodgett TM et al (2003) PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med 33:193–204CrossRefPubMedGoogle Scholar
  47. 47.
    Van Rijswijk CS, Geirnaerdt MJ, Hogendoorn PC et al (2004) Soft-tissue tumours: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology 233:493–502CrossRefPubMedGoogle Scholar
  48. 48.
    Wong KC, Kumta SM, Antonio GE et al (2008) Image fusion for computer-assisted bone tumor surgery. Clin Orthop Relat Res 466:2533–2541CrossRefPubMedGoogle Scholar

Copyright information

© EFORT 2010

Authors and Affiliations

  • I. M. Noebauer-Huhmann
  • J. Panotopolous
  • R. I. Kotz
    • 1
  1. 1.Department of OrthopaedicMedizinische Universität WienViennaAustria

Personalised recommendations