Trauma: Non-Union: New Trends

Chapter
Part of the European Instructional Lectures book series (EICL, volume 10)

Abstract

Fracture healing is a complex physiological process caused by the interaction of cellular elements that are activated and controlled by an array of cytokines and signalling proteins [11]. This process is both temporal and spatial in nature and usually results in the formation of new bone, which is structurally and mechanically similar to the pre-fracture state [10]. For al lot of reasons this process can fail and result in non-union of bone in 10% of all fractures and in up in 50% of open fractures of the tibia. These patients develop a non-union, which leads to long-lasting inability to work, loss of employment and high social costs. These cost are estimated in a paper of Sprague 2002 to be at approximately $80,000 in case of 18 weeks delay of fracture healing [28]. The overall costs of delayed fracture healing are estimated to be at $14.6 million in United States alone [6].

Keywords

Fracture Healing Distal Radius Fracture Union Rate Autologous Bone Grafting Magnetic Field Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aaron RK, Ciombor DM, Simon BJ (2004) Treatment of nonunions with electric and electromagnetic fields. Clin Orthop Relat Res (419):21–29Google Scholar
  2. 2.
    Agata H et al (2009) Feasibility and efficacy of bone tissue engineering using human bone marrow stromal cells cultivated in serum-free conditions. Biochem Biophys Res Commun 382(2):353–358CrossRefPubMedGoogle Scholar
  3. 3.
    Claes L, Willie B (2007) The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol 93(1–3):384–398CrossRefPubMedGoogle Scholar
  4. 4.
    Connolly JF (1995) Injectable bone marrow preparations to stimulate osteogenic repair. Clin Orthop Relat Res (313):8–18PubMedGoogle Scholar
  5. 5.
    Dimitriou R, Giannoudis PV (200) Application of rhOP-1 in non union. Report of 26 cases. Injury 375:524–528Google Scholar
  6. 6.
    Einhorn TA, Trippel SB (1997) Growth factor treatment of fractures. A.A.O.S.I.C. Lecture. American Academy of Orthopedic Surgeons Publications, Rosemont, IL, pp 483–494Google Scholar
  7. 7.
    Engelhardt P, Velasco R (1994) Prognosis of spongiosa-plasty of the fractured tibial shaft. Unfallchirurg 97(10):525–529PubMedGoogle Scholar
  8. 8.
    Frankel VH, Mizuho K (2002) Management of non-union with pulsed low-intensity ultrasound therapy–international results. Surg Technol Int 10:195–200PubMedGoogle Scholar
  9. 9.
    Friedlaender GE et al (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 83-A suppl 1(Pt 2):S151–S158Google Scholar
  10. 10.
    Gerstenfeld LC et al (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5):873–884CrossRefPubMedGoogle Scholar
  11. 11.
    Giannoudis PV, Kanakaris NK, Einhorn TA (2007) Interaction of bone morphogenetic proteins with cells of the osteoclast lineage: review of the existing evidence. Osteopo­ros Int 18(12):1565–1581CrossRefPubMedGoogle Scholar
  12. 12.
    Giannoudis PV, Tzioupis C (2005) Clinical applications of BMP-7. The UK perspective. Injury 36S:47–50CrossRefGoogle Scholar
  13. 13.
    Griffin XL, Warner F, Costa M (2008) The role of electromagnetic stimulation in the management of established non-union of long bone fractures: what is the evidence? Injury 39(4):419–429CrossRefPubMedGoogle Scholar
  14. 14.
    Hernigou P et al (2005) The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br 87(7):896–902CrossRefPubMedGoogle Scholar
  15. 15.
    Hernigou P et al (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437CrossRefPubMedGoogle Scholar
  16. 16.
    Hernigou P et al (2006) Percutaneous autologous bone-marrow grafting for nonunions. Surgical technique. J Bone Joint Surg Am 88 Suppl 1 (Pt 2):322–327CrossRefPubMedGoogle Scholar
  17. 17.
    Jingushi S (2009) [Bone fracture and the healing mechanisms. Fracture treatment by low-intensity pulsed ultrasound]. Clin Calcium 19(5):704–708PubMedGoogle Scholar
  18. 18.
    Jingushi S et al (2007) Low-intensity pulsed ultrasound treatment for postoperative delayed union or nonunion of long bone fractures. J Orthop Sci 12(1):35–41CrossRefPubMedGoogle Scholar
  19. 19.
    Malizos KN et al (2006) Low-intensity pulsed ultrasound for bone healing: an overview. Injury 37 suppl 1:S56–S62CrossRefGoogle Scholar
  20. 20.
    Matsuda Y et al (1998) Percutaneous autologous bone marrow transplantation for nonunion of the femur. Nippon Geka Hokan 67(1):10–17PubMedGoogle Scholar
  21. 21.
    Meister K, Segal D, Whitelaw GP (1990) The role of bone grafting in the treatment of delayed unions and nonunions of the tibia. Orthop Rev 19(3):260–271PubMedGoogle Scholar
  22. 22.
    Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79(11):1699–1709PubMedGoogle Scholar
  23. 23.
    Ristiniemi J (2007) External fixation of tibial pilon fractures and fracture healing. Acta Orthop Suppl 78(326):3, 5–34Google Scholar
  24. 24.
    Romano CL, Romano D, Logoluso N (2009) Low-intensity pulsed ultrasound for the treatment of bone delayed union or nonunion: a review. Ultrasound Med Biol 35(4):529–536CrossRefPubMedGoogle Scholar
  25. 25.
    Ronga M et al (2006) Recombinant human bone morphogenetic protein 7 for treatment of long bone non-union. Injury 375:551–556Google Scholar
  26. 26.
    Sakou T (1998) Bone morphogenetic proteins: from basic studies to clinical approaches. Bone 22(6):591–603CrossRefPubMedGoogle Scholar
  27. 27.
    Sen MK, Miclau T (2007) Autologous iliac crest bone graft: should it still be the gold standard for treating nonunions? Injury 38 suppl 1:S75–S80CrossRefGoogle Scholar
  28. 28.
    Sprague S, Bhandari M (2002) An economic evaluation of early versus delayed operative treatment in patients with closed tibial shaft fractures. Arch Orthop Trauma Surg 122(6):315–323PubMedGoogle Scholar
  29. 29.
    Weise K, Winter E (1996) Role of intramedullary nailing in pseudarthrosis and malalignment. Orthopade 25(3):247–258PubMedGoogle Scholar
  30. 30.
    Wozney JM (1989) Bone morphogenetic proteins. Prog Growth Factor Res 1(4):267–280CrossRefPubMedGoogle Scholar
  31. 31.
    Wozney JM et al (1988) Novel regulators of bone formation: molecular clones and activities. Science 242(4885):1528–1534CrossRefPubMedGoogle Scholar
  32. 32.
    Zimmermann G et al (2006) Clinical experience with bone morphogenetic protein 7 (BMP 7) in nonunions of long bones. Unfallchirurg 109(7):528–537CrossRefPubMedGoogle Scholar
  33. 33.
    Zimmermann G et al (2007) Therapeutic outcome in tibial pseudarthrosis: bone morphogenetic protein 7 (BMP-7) versus autologous bone grafting for tibial fractures. Unfallchirurg 110(11):931–938CrossRefPubMedGoogle Scholar
  34. 34.
    Zimmermann G et al (2007) Ergebnisse der Anwendung von Bone Morphogenetic Protein 7 bei Pseudarthrosen langer Röhrenknochen in Deutschland. In Congress of the German Society of Trauma Surgery, BerlinGoogle Scholar

Copyright information

© EFORT 2010

Authors and Affiliations

  1. 1.Department of Trauma SurgeryTheresienkrankenhaus MannheimMannheimGermany

Personalised recommendations