Planar Drawings of Higher-Genus Graphs

  • Christian A. Duncan
  • Michael T. Goodrich
  • Stephen G. Kobourov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


In this paper, we give polynomial-time algorithms that can take a graph G with a given combinatorial embedding on an orientable surface \(\cal S\) of genus g and produce a planar drawing of G in R 2, with a bounding face defined by a polygonal schema \(\cal P\) for \(\cal S\). Our drawings are planar, but they allow for multiple copies of vertices and edges on \(\cal P\)’s boundary, which is a common way of visualizing higher-genus graphs in the plane. As a side note, we show that it is NP-complete to determine whether a given graph embedded in a genus-g surface has a set of 2g fundamental cycles with vertex-disjoint interiors, which would be desirable from a graph-drawing perspective.


Outer Face External Face Fundamental Cycle Topological Disk Planar Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chen, J., Kanchi, S.P., Kanevsky, A.: A note on approximating graph genus. Information Processing Letters 61(6), 317–322 (1997)CrossRefMathSciNetGoogle Scholar
  2. 2.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Planar drawings of higher-genus graphs. Technical report (August 2009),
  4. 4.
    Eppstein, D.: The topology of bendless three-dimensional orthogonal graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 78–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. In: Proc. of the 18th ACM Symp. on Computational Geometry (SCG), pp. 244–253 (2002)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic Discrete Methods 4(3), 312–316 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kocay, W., Neilson, D., Szypowski, R.: Drawing graphs on the torus. Ars Combinatoria 59, 259–277 (2001)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Lazarus, F., Pocchiola, M., Vegter, G., Verroust, A.: Computing a canonical polygonal schema of an orientable triangulated surface. In: Proc. of the 17th ACM Symp. on Computational Geometry (SCG), pp. 80–89 (2001)Google Scholar
  9. 9.
    Miura, K., Nakano, S.-I., Nishizeki, T.: Grid drawings of 4-connected plane graphs. Discrete and Computational Geometry 26(1), 73–87 (2001)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins U. Press, Baltimore (2001)zbMATHGoogle Scholar
  11. 11.
    Thomassen, C.: The graph genus problem is NP-complete. J. Algorithms 10(4), 568–576 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Tutte, W.T.: Convex representations of graphs. Proceedings London Mathematical Society 10(38), 304–320 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Tutte, W.T.: How to draw a graph. Proc. Lon. Math. Soc. 13(52), 743–768 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Vodopivec, A.: On embeddings of snarks in the torus. Discrete Mathematics 308(10), 1847–1849 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zitnik, A.: Drawing graphs on surfaces. SIAM J. Disc. Math. 7(4), 593–597 (1994)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Christian A. Duncan
    • 1
  • Michael T. Goodrich
    • 2
  • Stephen G. Kobourov
    • 3
  1. 1.Dept. of Computer ScienceLouisiana Tech Univ 
  2. 2.Dept. of Computer ScienceUniv. of CaliforniaIrvine
  3. 3.Dept. of Computer ScienceUniversity of Arizona 

Personalised recommendations