Advertisement

Drawing Trees in a Streaming Model

  • Carla Binucci
  • Ulrik Brandes
  • Giuseppe Di Battista
  • Walter Didimo
  • Marco Gaertler
  • Pietro Palladino
  • Maurizio Patrignani
  • Antonios Symvonis
  • Katharina Zweig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)

Abstract

We introduce a data stream model of computation for Graph Drawing, where a source produces a graph one edge at a time. When an edge is produced, it is immediately drawn and its drawing can not be altered. The drawing has an image persistence, that controls the lifetime of edges. If the persistence is k, an edge remains in the drawing for the time spent by the source to generate k edges, then it fades away. In this model we study the area requirement of planar straight-line grid drawings of trees, with different streaming orders, layout models, and quality criteria. We assess the output quality of the presented algorithms by computing the competitive ratio with respect to the best known offline algorithms.

References

  1. 1.
    Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algorithms, with an application to counting triangles in graphs. In: Proc. SODA, pp. 623–632 (2002)Google Scholar
  2. 2.
    Bárány, I., Tokushige, N.: The minimum area of convex lattice n-gons. Combinatorica 24(2), 171–185 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Computational Geometry 9, 159–180 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Buriol, L., Donato, D., Leonardi, S., Matzner, T.: Using data stream algorithms for computing properties of large graphs. In: Proc. Workshop on Massive Geometric Datasets (MASSIVE 2005), pp. 9–14 (2005)Google Scholar
  6. 6.
    Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for upward drawings of binary trees. Comput. Geom. Theory Appl. 2, 187–200 (1992)MATHGoogle Scholar
  7. 7.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 531–543. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Garg, A., Rusu, A.: Straight-line drawings of binary trees with linear area and arbitrary aspect ratio. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 320–331. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Garg, A., Rusu, A.: Straight-line drawings of general trees with linear area and arbitrary aspect ratio. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, pp. 876–885. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Huang, M.L., Eades, P., Wang, J.: On-line animated visualization of huge graphs using a modified spring algorithm. J. Vis. Lang. Comput. 9(6), 623–645 (1998)CrossRefGoogle Scholar
  12. 12.
    Muthukrishnan, S.: Data streams: Algorithms and applications. Foundations and Trends in Theoretical Computer Science 1(2), 117–236 (2005)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Papakostas, A., Tollis, I.G.: Interactive orthogonal graph drawing. IEEE Trans. Computers 47(11), 1297–1309 (1998)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Shiloach, Y.: Arrangements of Planar Graphs on the Planar Lattice. Ph.D. thesis, Weizmann Institute of Science (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Carla Binucci
    • 1
  • Ulrik Brandes
    • 2
  • Giuseppe Di Battista
    • 3
  • Walter Didimo
    • 1
  • Marco Gaertler
    • 4
  • Pietro Palladino
    • 1
  • Maurizio Patrignani
    • 3
  • Antonios Symvonis
    • 5
  • Katharina Zweig
    • 6
  1. 1.Dipartimento di Ing. Elettronica e dell’InformazioneUniversità degli Studi di Perugia 
  2. 2.Fachbereich Informatik & InformationswissenschaftUniversität Konstanz 
  3. 3.Dipartimento di Informatica e AutomazioneUniversità Roma Tre 
  4. 4.Fakultät für InformatikUniversität Karlsruhe (TH) 
  5. 5.Department of MathematicsNational Technical University of Athens 
  6. 6.Department of Biological PhysicsEötvös Loránd University 

Personalised recommendations