On Open Problems in Biological Network Visualization

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5849)


Much of the data generated and analyzed in the life sciences can be interpreted and represented by networks or graphs. Network analysis and visualization methods help in investigating them, and many universal as well as special-purpose tools and libraries are available for this task. However, the two fields of graph drawing and network biology are still largely disconnected. Hence, visualization of biological networks does typically not apply state-of-the-art graph drawing techniques, and graph drawing tools do not respect the drawing conventions of the life science community.

In this paper, we analyze some of the major problems arising in biological network visualization. We characterize these problems and formulate a series of open graph drawing problems. These use cases illustrate the need for efficient algorithms to present, explore, evaluate, and compare biological network data. For each use case, problems are discussed and possible solutions suggested.


Metabolic Network Biological Network Graph Drawing Layout Algorithm Network Biology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Barsky, A., Gardy, J., Hancock, R., Munzner, T.: Cerebral: a cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23(8), 1040–1042 (2007)CrossRefGoogle Scholar
  3. 3.
    Becker, M., Rojas, I.: A graph layout algorithm for drawing metabolic pathways. Bioinformatics 17(5), 461–467 (2001)CrossRefGoogle Scholar
  4. 4.
    Brandes, U., Dwyer, T., Schreiber, F.: Visualizing related metabolic pathways in two and a half dimensions. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 111–122. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Cline, M., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., Christmas, R., Avila-Campilo, I., Creech, M., Gross, B., Hanspers, K., et al.: Integration of biological networks and gene expression data using Cytoscape. Nature Protocols 2(10), 2366–2382 (2007)CrossRefGoogle Scholar
  6. 6.
    Demir, E., Babur, O., Dogrusöz, U., Gürsoy, A., Nisanci, G., Çetin Atalay, R., Ozturk, M.: PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways. Bioinformatics 18(7), 996–1003 (2002)CrossRefGoogle Scholar
  7. 7.
    Dogrusöz, U., Giral, E., Cetintas, A., Civril, A., Demir, E.: A compound graph layout algorithm for biological pathways. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 442–447. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Funahashi, A., Morohashi, M., Kitano, H.: CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1(5), 159–162 (2003)CrossRefGoogle Scholar
  9. 9.
    Görg, C., Pohl, M., Qeli, E., Xu, K.: Visual Representations. In: Kerren, A., Ebert, A., Meyer, J. (eds.) GI-Dagstuhl Research Seminar 2007. LNCS, vol. 4417, pp. 163–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Junker, B., Klukas, C., Schreiber, F.: VANTED: A system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7, 109 (2006)CrossRefGoogle Scholar
  11. 11.
    Karp, P., Ouzounis, C., Moore-Kochlacs, C., Goldovsky, L., Kaipa, P., Ahren, D., Tsoka, S., Darzentas, N., Kunin, V., Lopez-Bigas, N.: Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Research 33, 6083–6089 (2005)CrossRefGoogle Scholar
  12. 12.
    Karp, P., Paley, S.: Automated drawing of metabolic pathways. In: Proc. International Conference on Bioinformatics and Genome Research, pp. 225–238 (1994)Google Scholar
  13. 13.
    Karp, P., Paley, S., Romero, P.: The pathway tools software. Bioinformatics 18(S1), S225–S232 (2002)Google Scholar
  14. 14.
    Kohn, K., Aladjem, M.: Circuit diagrams for biological networks. Molecular Systems Biology 2, e2006.0002 (2006)Google Scholar
  15. 15.
    Li, W., Kurata, H.: A grid layout algorithm for automatic drawing of biochemical networks. Bioinformatics 21(9), 2036–2042 (2005)CrossRefGoogle Scholar
  16. 16.
    Michal, G.: Biochemical Pathways, 4th edn. (Poster). Roche (2005)Google Scholar
  17. 17.
    Nagasaki, M., Doi, A., Matsuno, H., Miyano, S.: Genomic Object Net: a platform for modeling and simulating biopathways. Applied Bioinformatics 2, 181–184 (2004)Google Scholar
  18. 18.
    Nicholson, D.: Metabolic Pathways Map (Poster). Sigma Chemical Co. (1997)Google Scholar
  19. 19.
    Novère, N.L., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A., Demir, E., Wegner, K., Aladjem, M., Wimalaratne, S., Bergman, F.T., et al.: The Systems Biology Graphical Notation. Nature Biotechnology 27(8), 735–741 (2009)CrossRefGoogle Scholar
  20. 20.
    Offenhuber, D., Donath, J.: Comment Flow: visualizing communication along network paths. Poster presented at IEEE InfoVis 2007 (2007)Google Scholar
  21. 21.
    Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 27, 29–34 (1999)CrossRefGoogle Scholar
  22. 22.
    Schreiber, F.: High quality visualization of biochemical pathways in BioPath. Silico Biology 2(2), 59–73 (2002)Google Scholar
  23. 23.
    Sirava, M., Schäfer, T., Eiglsperger, M., Kaufmann, M., Kohlbacher, O., Bornberg-Bauer, E., Lenhof, H.: BioMiner - modeling, analyzing, and visualizing biochemical pathways and networks. Bioinformatics 18(S2), 219–230 (2002)Google Scholar
  24. 24.
    Suderman, M., Hallett, M.: Tools for visually exploring biological networks. Bioinformatics 23(20), 2651–2659 (2007)CrossRefGoogle Scholar
  25. 25.
    Yost, B., North, C.: Single complex glyphs versus multiple simple glyphs. In: CHI 2005 extended abstracts on human factors in computing systems, pp. 1889–1892. ACM, New York (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Max Planck Institute for InformaticsSaarbrückenGermany
  2. 2.School of Mathematics and Systems Engineering (MSI)Växjö UniversitySweden
  3. 3.Faculty of Computer ScienceDortmund University of TechnologyGermany
  4. 4.Center for BioinformaticsEberhard Karls University TübingenGermany
  5. 5.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben and Institute for Computer ScienceMartin-Luther-University Halle-WittenbergGermany
  6. 6.Clayton School of Information TechnologyMonash UniversityAustralia

Personalised recommendations